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1. INTRODUCTION

Superstring theories [1] are at present the only candidates for a unified theory
of all interactions which can incorporate a consistent theory of quantum gravity.
All evidence so far points to their being anomaly free and finite to one-loop order.
They are however still far from being well-understood. For example, we know now
that their classical vacua correspond to two-dimensional conformal field theories.
But we still do not know the classical equations of motion to which these vacua are
solutions. Nor do we have any clue about the role of non-perturbative effects in
lifting the vacuum degeneracy. It is important at this point to probe more deeply
into the structure of the theory. Some fundamental questions which have attracted
attention recently [2] are:

a) String perturbation theory;

b) Field theory and non-perturbative formulations of string theory;

_¢) Compactification and classification of conformal field theories;

d) Symmetries of the theory at the Planck scale;

- ¢) String loop corrections to the equations of motion.

In this article we shall describe recent progress on the first issue. We shall re-
strict our discussion to theories of closed oriented strings. Strings moving in a fixed
background sweep out a two-dimensional surface, which is called the world-sheet.
Strings interact by joining and splitting. Thus handles on the world-sheet indicate
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creation and annihilation of virtual pairs, and the loop order of string perturba-
tion theory is just the genus of the world-sheet. Quantization requires a sum over
histories, which becomes then a sum over surfaces. A key principle is conformal
invariance, which says that the contribution to quantum amplitudes of each sur-
face should depend only on the conformal structure of the surface, and not on more
detailed information such as the world-sheet metric. Thus quantum amplitudes at
each loop order h = 0,1,2,...,00 should be expressible as integrals over the

moduli space of Riemann surfaces of genus h.
The main problem in string perturbation theory is to formulate practical rules for

evaluating these amplitudes, which should play a role analogous to that of Feynman
rules in quantum field theory. Once the correct rules have been laid down, we can
hope to establish the finiteness and unitarity of string amplitudes, order by order in
the loop expansion. For the bosonic string, a reasonably simple set of such rules
is known (see [3], Chapters 2,8, and references therein). An important feature of
these rules is the independence of left and right movers on the world-sheet, which
translates into holomorphicity and antiholomorphicity of the integrand on moduli
space [4]. This of course is a powerful constraint, which allows us to exploit the
machinery of algebraic geometry and the theory of modular forms. These theo-
ries have allowed us to gain a very good understanding in this case. The bosonic
string is however an unrealistic model since it carries no fermionic degrees of free-
dom, and its spectrum contains a tachyon. In superstring theories, these problems
are expected to be cured respectively by introducing fermionic superpartners to the
bosonic degrees of freedom, and by carrying out the so-called GSO projection (c.f.
Section 3) which eliminates the tachyon mode. These very remedies are the source
of new serious difficulties in evaluating superstring amplitudes. In particular they
will force us to probe deeply into supergeometry, the theory of super Riemann sur-
faces, and their relation with more classical algebraic geometry and modular forms.

We shall now describe the main issues briefly.

In bosonic string theory, the action is invariant under reparametrization of the
world-sheet and Weyl scalings of the metric. These symmetries are crucial to insure
decoupling of the ghosts and unitarity. The string equations for the background in
which the string propagates are actually the conditions for conformal invariance in
the two-dimensional quantum theory. Reparametrization invariance can be main-
tained by writing down only manifestly reparametrization invariant measures. A
first difficulty peculiar to superstrings is that in this case, we need two additional
symmetries to decouple the ghosts, namely local N = 1 supersymmetry and su-
per Weyl symmetry. Unlike for reparametrization invariance, we do not have at our
disposal functional measures on spaces of tensors and spinors which are manifestly
supersymmetric. A way around this is to rely on the superspace formalism, and ex-
press superstring scattering amplitudes in terms of integrals over the «supermoduli
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space» of super Riemann surfaces. The metrics and measures that arise this way
are however no longer positive definite. Also the global theory of supermanifolds

-and super Riemann surfaces is still in its infancy. The two fundamental problems

from this point of view would be to develop this theory to the level of the modern
theory of Riemann surfaces, and/or to integrate out the odd parameters and reduce
integrals over supermoduli space to the more familiar integrals over moduli space.
Various Ansatze for the latter procedure have been suggested in the literature [5],
each with its own problems. We shall return to them shortly. A second difficulty of
superstrings is a correct prescription for the GSO projection. In the sum over histo-
ries approach, this should correspond to factoring superstring integrands into forms
holomorphic and antiholomorphic on moduli or supermoduli space, assigning in-
dependent spin structures to each, and summing over them. It is by no means clear
how to carry this out in practice, due to the fact that the fields describing propaga-
tion of superstrings cannot be split,and N = 1 supersymmetry forces the inclusion
of many terms mixing intricately left and right chiralities. Upont quantization we
are led to expressions involving functional determinants and correlation functions
of fields of various spins. The combined determinants are known to factor, thanks
to the Belavin-Knizhnik theorem which already made its appearance in the bosonic
string. Thus the issue here is to factor the correlation functions.

We shall derive rules for factoring correlation functions, enforcing the GSO pro-

jection, and reducing integrals over supermoduli space to integrals over moduli
space. It tums out that although we initially separated the two problems about mea-
sures and holomorphic factoring in superstring amplitudes somewhat artificially,
their resolution is intimately linked. We develop the geometry of super Riemann
surfaces to the point where these rules can be enunciated in an especially simple
way. They are given in the supergravity formalism for super Riemann surfaces,
which is the one naturally resulting form the Polyakov [6] covariant formulation of
superstring theory. It is likely that the superanalytic objects emerging in this way
will prove to be key ingredients in the understanding of the super algebraic geome-
try of supermoduli space. It would of course be very valuable to make contact with
other approaches to super Riemann surfaces, in particular the light-cone approach
of Mandelstam [7]. The equivalence of the light-cone and covariant formalisms
would establish unitarity of the covariant approach. Efforts in this direction are in

(81091
We expect that our simple chiral amplitudes in terms of which all perturbative

amplitudes are formulated will provide a solid starting ground for a complete proof
of finiteness. Nevertheless such a proof of finiteness is still lacking. Of course ar-
guments of a rather general nature in favor of finiteness at the perturbative level of
superstring theories have been advanced by many authors, but certainly no proof
from a precise prescription (say, comparable to one-loop formulas for scattering of
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massless bosons) is available at this point. On the other hand, by the fall of 1987,
many apparent inconsistencies and ambiguities had been uncovered in the various
prescriptions suggested to date [10], [11], [12], including the one based on BRST
invariance [11] [12] [14]. Some inconsistencies seemed to even suggest a catas-
trophic breakdown of gauge invariance [13] [15] [16] [17]. We shall provide later
(see Section 8) a fuller account of them. An essential criterion of any new prescrip-
tion should certainly be that it offer a way out of such problems. We shall argue
that our prescription does, providing strong evidence for the internal consistency
of string perturbation theory.

This paper is based on lectures given by the authors at the Rome Conference
on String Theory in July 1988. Or goal is provide a useful complement to the
survey article [3]. We have attempted to provide a quick path to the most urgent
problems in perturbation theory for superstrings. For this we have omitted many
full derivations. On the other hand we have attempted to reach a wide audience by
providing some informal discussions of basic material which may not be familiar to
non-specialists. Also some more recent work on function theory on super Riemann
surfaces has been included, which was not available in [3].

2. THE BOSONIC STRING

We shall begin with a brief discussion of some key features of the bosonic string
which will serve as a guide to the superstring.

At the order h of perturbation theory the world-sheet is a surface with h han-
dles imbedded in space time. If space-time is a Riemannian manifold of dimension
d with coordinates z!,...,z%, we can view such a surface as the image of a fixed
surface with h handles M by d scalar functions z!,...,z% definedon M . The
Nambu-Goto action for string propagation is just the area of the imbedded surface.
In local coordinates £!,¢2 on M , it can be written as

(2.1 Ing(z*) = 3/ d2evh
41r M
where
h= deth,,,
(2.2) Bpn = 0 7#8,3"G,,(3) ,

G, is the metric of space-time, and T" is the string tension. Another action is that
of the two-dimensional sigma model, where in addition to the scalar fields z* we
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also introduce a two-dimensional metric g,,, on the world-sheet

(23) I(xp:gmn) = 2/ dz&\/-g-gmnamx“aﬂavaﬂv(m) °
87 M

In the mathematics literature, it is rather called the energy integral, and its critical
points harmonic maps. Classically the dynamics of the two actions are the same,
since the variational derivative of the sigma model action with repect to the metric
9ynn » Namely the stress tensor

_ 4w &I
Tmu-—“\/—a&]—m

T 1

vanishes exactly when g, . is conformal to h_ , in which case the two actions
coincide. In the Polyakov formulation we quantize strings using the sigma model
action, since it has the advantage of being quadratic in z¥ when space-time is flat
Minkowski space:

2.4 (2", gp) = — / d2¢ /5™, 740, 2 .
81f M

Henceforth we shall only deal with Minkowski space-time and set the string tension
T to 1. The sum over histories becomes the sum over all fields z* and g, , SO
that quantization leads to functional integrals with respect to the measure

(2.5) Dy,,,Dz#e 1(= ma) .

In particular the partition function for the bosonic string is given by

(2.6) Zg0s = / Dy, Dabe-I5m)
and scattering amplituedon N particles of momenta k! and masses m? = —k¥ ki,
are given by

N ‘ N
(2.7 <H V,-(ké‘)> = /ngnD zhe= (2" gma) H Vi(k) .
i=1

i=1

Here the V;(k!) can be viewed mathematically as various moments of this mea-
sure. The simplest ones which correspond respectively to the tachyon and the gravi-
ton multiplet are

V_lkﬂ=/d2£\/§eik“z“
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(2.8) Vo (k) = e#u/dzf\/g‘amzyamxveikpzp )

We can now have an idea of why the theory is conformally invariant, in the sense
that the contribution of each surface to the amplitudes (2.4) depends only on its
complex structure. The action (2.3) is invariant under reparametrizations of the
world-sheet and Weyl scalings of the metric g,,,, . For later reference we list here
the infinitesimal forms of these two gauge symmetries. Their infinitesimal genera-
tors are respectively a vector field §u™ and a scalar field 8o, and the correspond-
ing infinitesimal changes of the metrics will be

Diff (M) : 6g,,, = V,,6v, + V, v,

(2.9 Weyl (M) : 8g,,, = 260q,,, -

In the absence of anomalies, we should be able to factor out the volumes of the
gauge groups and the functional integrals (2.5) and (2.6) should reduce to integrals
over the moduli space M, of Riemann surfaces of genus h

(2.10) M, = {metrics g,,,}/Diff (M) x Weyl(M) .

Of course Weyl symmetry is in general anomalous, but it is by now well-known that
the anomalies of matter fields z# and reparametrization ghosts b,, ,c™ cancel for
the critical dimension d = 26 . We shall discuss this cancellation in greater detail
below. This anomalous behavior is also responsible for conformal invariance of
the scattering amplitudes (2.7), which naively seem to depend on the scale of the
world-sheet metric g, . In the critical dimension, scattering amplitudes do reduce
then to integrals over moduli space, and we shall now discuss the exact form of the
integrand for the simplest case of the partition function. It is instructive to exhibit
it in several forms, each with its own advantages.

For this we recall some basic facts about the geometry of moduli space. It is
convenient to introduce local isothermal coordinates 2z and Z, under which the
metric becomes ds? = 2g,,dzdz. A variation of complex structure is parame-
trized by a Beltrami differential y;, , and local isothermal coordinates w,w for
the deformed structure can be obtained by solving the Beltrami equation

(2.11) O,w= p;°0,w.
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Now new complex structures obtained this way from two Beltrami differentials
could still be equivalent by a reparametrization. This will happen when the Beltrami

- differentials differ by a term of the form 9,6v* (in view of (2.9)). Thus the tangent
space to moduli space can be identified with

(2.12) T(M,) = {Beltrami differentials z,*}/{Range 9, on vector fields} .

Since Beltrami differentials can be paired off with quadratic differentials ¢,, by

(2.13) (uld) = / 220,76,

we deduce that the cotangent space to moduli space is the space of holomorphic
quadratic differentials. The index theorem applied to the d; operator on rank 2
tensors shows that the dimension of the space of quadratic differentials is 0 for
genus 0,1 ,forgenus 1,and 3h—3 forgenus h > 2 , the cases of genera 0 and
1 being different because of the presence of continuous families of holomorphic
automorphisms of dimension 3 and 1 respectively. To fix the notation, we shall
put ourselves in the genus h > 2 case, the other cases following with simple
modifications. We can now return to the gauge-fixed forms for the bosonic string
partition function.

The general gauge-fixed form

We begin by the most general form. We parametrize moduli space by 3h — 3
dimensional slices S of metrics g,;(7) , where 7;,..., 73, 5 are local coordi-
nates for moduli space. Let p,,i=1,...,3h — 3 be the corresponding Beltrami
differentials

3h-3

(2.14) 895 = ) 610,:(u");i -
1=1

At each metric g,;(7) , let ¢u‘j,)‘ = 1,...,3h — 3 be any basis of quadratic
differentials, holomorphic with respect to the complex structure defined by g,;(7) .
We shall denote by 6, , the operator on rank n tensors given by

(2.15) 8,(¢, ,d2") = (0,9, ,)dzdz" .

All inner products and adjoints on spaces of tensor at T will be taken using the
metric g,;(7) . Then the expression in local coordinates for the bosonic partition
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function is

- 3h-3 3h-3=
Zgos = / A nd? T

R —4 = -13
det < pild; > derd det 8} 8,
det < ¢;¢; > 2 fd2zg,;

It is not difficult to give a simple motivation for all the ingredients appearing in the
basic formula (2.16). The expression involving the determinant of §, is just the
gaussian integrals over the free scalar field z#,u = 1,...,26 . The reason for the
area factor is the constant zero mode of the Laplacian A = 5(1, d, » which has to
be factored out in order to produce a finite answer. For the partition function, this
means we have omitted the infinite volume of Minkowski space-time. For scatter-
ing amplitudes the integration over the constant zero mode will produce a Dirac §
factor guaranteeing conservation of overall momentum. To understand the remain-
ing ingredients, we note that locally the space of two-dimensional metrics can be
parametrized by orbits of gauge transformations 6o, §v?, and the moduli param-
eters 7;. The jacobian of the change of variables from 6g = (8g;;, 69,,,69,;)
to

(2.16)

3h-3
(2.17) (2 V,bu; + E 879,51, + cc.,,V,u; + 50)
i=1

must involve the determinant of the operator V!V, acting on vector fields v*, as
well as the angle that the slice S makes with the orbits of the symmetry groups. But
the adjoint of this operator is just the operator 5; , 52 , and we have accounted for
this determinant in (2.16). Finally we note that the space of holomorphic quadratic
differentials ¢, is orthogonal to the orbits of the symmetry groups, so that the ratio
of finite determinants occurring in (2.16) can be interpreted as the sin of the angle
between S and the orbits, as it should be.

The cases of genera 1 and 0 require modifications because there are holo-
morphic automorphisms of the surface. These produce the same effect as Weyl
scalings, so there is redundancy in the above evaluation of jacobians. The way to
handle this is to restrict the gauge-fixing operator 52 only to the orthogonal com-
plement of the space of conformal Killing vectors. The net result is that we have
to divide now the integrand in (2.16) by the volume Vol ( Kcréz) of the group of
holomorphic automorphism. For genus 0 , this volume is infinite, so that the par-
tition function vanishes. For genus 1 it is finite. In this case we can evaluate all
relevant determinants by zeta function regularization and arrive at the formula

(2.17) Zpos = / 821_2(4%7'2)'12]1»(7')]_48
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where n(7) = /12 [[2, (1 — €2™") is the Dedekind eta function.
The formula (2.16) for the bosonic partition function is completely unambigu-
- ous, and manifestly independent of the choice of slice S. Although we have dis-
cussed only the factoring out of the volumes of the continuous symmetry groups,
invariance under the discrete reparametrizations of the w,;_')rld-sh'cet, the so-called
mapping class group of surfaces of genus h, requires that we restrict to a fun-
damental domain, in other words, to moduli space. It should be pointed out that
there are no possible anomalies for these symmetries in the present situation, since
all infinite-dimensional determinants appearing in (2.16) are determinants of self-
adjoint Laplacians. These can be regularized in a manifestly reparametrization in-
variant way, for example by the zeta function method. The above one-loop formula
provides a concrete example: its being unambiguous means that |n(7)|*7, is a
scalar under SL(2,Z) , which is essentially equivalent to the well-known trans-
formation law for the Dedekind eta function.

Formulation with ghosts

Another way of representing the string measure is to introduce ghost fields b =
b,,dz? and c = c*(dz)~', with action

1 1 =z
(2.18) Ly(b,c) = ﬁ/d%(b,,aic' +b,,0,¢) .

Naively the integral over bbcc of exp(—1I, o4) should give us the Faddeev-Popov
determinant det 5{ 52 of (2.16). This would have been the case if the operator
9, had no zero mode, and the modes of the fields b and ¢ were in one-to-one
correspondence. However there are 3h —3 b—zero modes, and the index theorem
asserts that the asymmetry between b and ¢ modes is exactly 3h — 3 . Thus to
get a non-zero answer, we should insert at least 3h — 3 b terms, and the number
of b insertions should always exceed the number of ¢ ipsenions by 3h—-3.In
particular

3h-3
(2.19) /D(bi;aé)e— (80| H < wilb > [* = det'd}d,

=1 -

det < p;lg; > |?
det < ¢,I¢] >

The right hand side of (2.19) is precisely the full gauge-fixing factor in (2.16). Thus
thanks to the ghost formalism, the difficulty due to global topology of zero modes
for the gauge-fixing operator has provided its own cure: absorbing the zero modes
gives the correct string measure. The final answer is very simple

3h-3
(2.20) Zgos = / D(bbcez*)| [ < plb > [Pe~IommD*lalbed)

i=1
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One especially powerful feature of the ghost formulation is that it exhibits Becchi-
Rouet-Stora-Tyutin or BRST invariance, which provides a check on gauge-fixed
amplitudes. It has also proved crucial in certain attempts at a field theory of strings
[26], but we shall have no occasion to discuss these aspects here. The infinitesimal
parameter for BRST symmetry is an anti-commuting number ), and it acts as
follows:

éz* = \c*0, 2"

(2.21) 8¢ = AV, ¢*

8b, = —X [—%—6,2:“6,:5“ +EV,b, + 2 v,c')b,,] .

Note that the variation for b,, is just the total stress tensor.

Conformal anomalies and critical dimension

A way of motivating the critical dimension d = 26 is by requiring that the
expression (2.16) be indeed independent of the choice of metric g,,,, within each
conformal class. For this we need the dependence on the conformal factor of the
determinants normalized by their zero modes. A heat kemel computation gives

5. log det 910, _
T det < 4™ (5 > det < 47 g >

6n2 —6n+1

1
= /Md 2\/gRéc 21re_/;,d z\/gb0

(2.22)

where ¢ is a short time cut-off, and ¢{™ denotes holomorphic forms of rank n
when they exist. If we represent determinants by functional integrals (as for the
scalar Laplacian and the ghost determinant above), the actions are Weyl invariant,
and this non-trivial dependence on the conformal factor can be attributed to the
measures Dz and D(bbct) . For scalars the coefficient ¢, = 6n2 —6n+ 1 is 1

while itis 13 for n= 2 . The full expression (2.16) is only conformally invariant
when there are 26 scalar fields z# , whence the dimension of space-time.

There is a faster way of deriving the coefficient c” . From Ward identities for
reparametrization invariance, it is readily seen that the coefficient of the conformal
anomaly ¢, mustbe +1/2 the central charge of the Virasoro algebra, depending
on whether the fields are commuting or anti-commuting. In other words, if T}, is
the stress tensor of the corresponding theory, we must have

+c,
T"Tuw ~ ’(z_—:.’)“-i-
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For chiral scalars z, the stress tensor is T,, = —3d,20,z/2 , the propagator <
2(z)x(w) > has singularity ~ log(z —w) ,and we find T,,T,,, ~ ;25 . This

-agrees with the previous result, since z can be formally split into its two chiral

halves. For general rank 7 the corresponding fields are b(dz)™ and c(dz)!'~",
the action is similar to (2.30), and the stress tensor can be worked out to be T,, =
—nbd,c+(1—n)(8,b)c. Since the propagator < b(z)c(w) > behavesas 1/(z—
w) at short distances, a simple calculation by Wick contractions gives T,,T,,, ~

—(6m —6n+1)/(z —w)*,if b,c are chosen to be anti-commuting as was the
case for ghosts. This gives again the coefficient of the conformal anomaly.

Hyperbolic geometry formulation

We can obtain a very simple expression for the bosonic string partition function
by representing a complex structure by a metric § og constant negative curvature
—1. Quadratic differentials can be given a norm

(2.23) 6|12 = / 4225763z

which provides moduli space with a Kahler metric, called the Weil-Petersson met-
ric. Denoting the corresponding Kahler form by wy, p , we can rewrite the partition
function as

(2.24) Zgos = C4 / (wyp)*22(2)2' ()1
M,

where for each hyperbolic geometry Z(s) is the corresponding Selberg zeta func-
tion

(2.25) Z(s)= [ JIa-e™h.
closed geodesicsl k=1

The reason (2.16) can be put in this form is because the expression

_|det < plp >
HdT"dT‘ det < ¢|p >

can be recognized as the coset measure on moduli space viewed as
M, = {8, with B = —1}/Diff (M)

and that determinants of Laplacians on rank —n tensors on hyperbolic surfaces are
given by values of Selberg zeta functions at n+ 1, or of their derivatives if there
are zero modes. Thus the derivative of Z(s) at 1 is due to the constant zero mode
of the laplacian on scalars.
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Algebraic geometry formulation

A formulation which is especially important is the one which exhibits the holo-
morphic structure of the integrand. Physically this holomorphic structure reflects
the independence of the left and right movers that lies at the core of the construction
of superstring theories. The geometric fact which allows to state the formula in the
most economical way is that the line bundle

(2.26) LD

over moduli space is holomorphically trivial [19]. Here & is the canonical bundle
of moduli space, in other words the highest wedge power of its cotangent bundle.
Since a cotangent vector on moduli space is a quadratic differential ¢;, x is the line
bundle whose local sections are of the form ¢; A... A ¢3,_5 . Similarly ) is the
Hodge bundle over moduli space, namely the highest wedge power of the bundle
of abelian differentials (=holomorphic 1 — forms on the surface). Recall that the
space of abelian differentials is always of dimension h , so that a local section of A
is of the form w; A...Aw, , where w, is a basis of abelian differentials. We shall
shortly give an explanation for the triviality of (2.26). Presently we note thatup to a
constant independent of the complex structure (but depending on the genus), there
is a unique holomorphic nowhere vanishing section s of £ ® A~'* . Thus given
say, any basis of abelian differentials w;, we can select a basis ¢; of quadratic
differentials so that A¢; ® (Aw;)~!* = s. The desired expression for the bosonic
partition function is then the following

(227) ZBOS = Ch/¢1 A...A¢3h_3 A$1 /\.../\&3,'_3 det < wIIUJJ >——13

which is independent of the choices of abelian and quadratic differentials. It is often
convenient to fix a homology basis A;, B; with intersection numbers

11(AI’AJ) = ﬂ(BI,BJ) =0

(2.28)
#(A;, By) =64

and define the abelian differentials w ; to be the dual basis to the A; cycles. The
integrals of the abelian differentials around the B; cycles form then the period
matrix Q,; , which in fact characterizes the complex structure of the surface:

/ wy =6y

Ar

/ wy =1Ly .
B;

(2.29)
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With this choice the matrix of inner products of the abelian differentials becomes
the imaginary part of Q;; , and we can rewrite (2.27) as

(2.30)  Zpos = c,,f¢, Acoibsp 3 Ady A Adsy_s(det ImQ) B |

The constant depending on the genus can be explicitly derived from its value at
h =1 by letting the surfaces degenerate.

We provide now an explanation for this approach. The underlying principle is
that in any reasonable sense, the operators 0 can be viewed as depending holo-
morphically on moduli parameters. For example if we let z denote isothermal
coordinates for a reference complex structure and its operator 9, , the operator
corresponding to a deformation by a Beltrami differential p = p.* is 9; — ud,,
which depends only on y and not its complex conjugate. Furthemore bases of zero
modes can be chosen locally to depend holomorphically on moduli parameters. We
have already referred implicitly to this latter fact above, in constructing holomor-
phic local sections of the bundles x and X\ on moduli space. This suggests that
the determinants of 9 should also depend holomorphically on moduli. Defining
determinants of non self-adjoint operators such as @ is however problematic, and
requires some arbitrary choices. In this context, we note that only determinants of
Laplacians such as 0'0 intervene, so that the zeta function provides a determinant
which is a scalar, invariant under reparametrizations of the world-sheet. The ex-
traneous data in this case is the metric, by opposition to just the complex structure.
It is then natural to ask whether the determinant of the Laplacian is the square of
a holomorphic function on moduli space. The answer is provided by the Belavin-
Knizhnik theorem, which says that there is a «<holomorphic» anomaly, which is very
similar to chiral anomalies in gauge theories:

det 8} 0n _
det < ¢{” |¢\" > det < ¢{' |4} >

- w__Gil_/dszaqu‘ .
127

6,6, log

(2.31)
Here we have demormed the metric to second order by

29,;d2dz — 2g,;|dz + p;*dz|* .

The upper index n for the holomorphic forms ¢§") refers to their rank. The im-
portant property of the holomorphic anomaly is that it has the same coefficient as
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the conformal anomaly, and the contributions of the determinants on 2 forms and
on scalars will again cancel in dimension 26 . This means that the expression

at & | x4 2
22 det 93, a3,
det < {767 > | | [d?2g,; det <wylw; >

-13

is the square of a holomorphic function on moduli space. No global choice of
bases ¢, and w; exist globally, but (2.32) depends only on the combined section
s = (A¢;) ® (Awp)~'2, which does exist globally. Thus (2.32) is actually a
constant independent of moduli. Since [[d7d7|det < p;l¢; > |* is just the
coordinate expression of A,¢,®A, ¢, , the formula (2.27) for the bosonic partition
function follows from the general gauge fixed formula (2.16).

The triviality of x ® \~!> was noticed a while ago by Mumford [19]. Actually
the Belavin-Knizhnik formula can be viewed as a curvature version of the orig-
inal characteristic class arguments, which made use rather of the Grothendieck-
Riemann-Roch theorem. The proper setting is the determinant line bundles of
Atiyah and Singer [20], which had provided a geometric interpretation for chiral
anomalies. In this case, associated to each complex structure and each d operator
onrank n tensors is a one-dimensional vector space

max -1 max -1
(2.33) (/\ KERa,,) ® (/\ KEREI_,.> .
Together they form a holomorphic line bundle over moduli space, denoted by
DET 4, . A local section f of this bundle is of the form
(2.34) F=NgP @Ay )7
We can define a metric, the Quillen metric [21], on DET 5,. by

det 89,

(2.35) 2 = .
1fllg dot < 4 |¢§,.) > dot < g0 |¢§1_,.) >

The Belavin-Knizhnik formula (2.31) gives then the curvature of DET 3,, with re-
spect to the Quillen metric. Cancellation of holomorphic anomalies means that the
tensor products of the corresponding determinant bundles are flat. For the bosonic
string in genus A > 2 the relevant bundles are DET 32 = k,and (DET4,) -3 =
(A® 1)1 = \-13, Strictly speaking a complete argument requires cancellation
of global anomalies as well. As pointed out by Witten, this means vanishing holon-
omy. The full treatment of these last issues can be found in [22], and we shall not
pursue them further here.
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The net outcome is that we have at this point a complete understanding of how to
gauge fix and compute scattering amplitudes for the bosonic string. Physically the
-bosonic string moving in flat euclidian space-time is an ill-behaved model, due to
the presence in the spectrum of a tachyon. This particle can be detected by inspect-
ing the degeneration behavior of the partition function. From the point of view of
hyperbolic geometry, one can approach the boundary of moduli space by shrinking
to zero the lenght of a closed geodesic [ . Values of the Serlberg zeta function and its
derivatives at s will vanish at essentially the exponential rate e~™2!. Combining
this with known asymptotics for the Weil-Petersson measure shows immediately
the divergence of the partition function. Altematively, the line bundle x ® A B
is trival over moduli space, but not over the compactified moduli space where one
includes surfaces with nodes. In fact denoting the divisor of surfaces with nodes by
A , one can show that its divisoris —2 A , so that the string integrand has a pole of
order two at the boundary. Clearly these contributions are due to a tachyon.

As an example we can easily derive an explicit expression for the two-loop par-
tition function in terms of theta functions, extending the well-known one-loop for-
mula (2.17) [25]. Rewriting the formula (2.27) as an integral over period matrices
Q gives

(2.36) Zgos = c,,/|HdQ”P(detImn)-‘3|d>(n)|-2
I<J

where ®(Q) is a modular form. Since the modular invariant measure is

| T] 4 Qs (det Tm Q) =(h+D
I<J

and the determinant of the imaginary part of the period matrix transforms as

det Im Q — (det Im Q) |det(CQ + D) |2
under modular transformations (é g) , modular invariance of the full partition
function implies that ®(Q) be a modular form of weight 12 — h , that is,

O(Q) - D(Q)(det(CQ + D)) 127

In genus 2 the weight of ®(Q) is then 10 . Now the ring of modular forms in
genus 2 has been completely identified by Igusa [26], as a polynomial ring with
generators ¥,, ¥, ¥,o,¥,, of weights 4,6,10,12 . The only candidates for
¥ (Q) must be multiples of ¥,¥, or ¥,, . To decide which one, we compare
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boundary behaviors. The components of the boundary of the space of period ma-
trices is given by Ay = {Q,; — oo}, comesponding to the case when a handle
degenerates, and A, = {Q,; = 0} corresponding to the surface being separated
in two by a zero homology cycle shrinking to zero. Recall that a holomorphic
transversal coordinate to the boundary of moduli space is provided by the parame-
ter ¢ of the plumbing fixture zw = ¢ that models the formation of a node. In terms
of t the asymptotic form of the entries of the period matrix behave as Q;; ~ log ¢
near A, ,and Q,, ~t near A, . Thus the form ¥ (L) must vanish of first order
along A, and of second order along A, . Since the form ¥,¥ does not vanish
along A, , this identifies ®(Q) with ¥,y , which is given by

¥y = ] 916100,Q).

& even

Thus for genus 2

(2.37)  Zpos =c2/|HdQ”|2| [T 161€0,2)*(det Im Q)" .

I<J § even

A more detailed analysis for genus h = 3 gives a similar answer

(2.38)  Zpos =c3/|HdQU|2| [T »061¢0,2)|!(det Im @)~ .

I<J § even

3. FERMIONIC STRINGS

We begin by introducing the fields necessary to describe propagation of
fermionic strings. A guiding symmetry is N = 1 world-sheet supersymmetry,
which is the supersymmetric partner of reparametrization invariance. Just as repa-
rametrization invariance led to the Einstein-Hilbert action in 4-dimensional space-
time, the action of fermionic string propagation will be dictated by reparametriza-
tion invariance and supersymmeétry. The superpartners of the scalar fields z# will
be Majorana spinors * , while the superpartner of the world-sheet metric will be
a two-dimensional gravitino field x2 . Since these new anti-commuting fields are
spinors, and the world-sheet has non-trivial topology, we need to specify a spin
structure. On a surface of genus h , there are 22# spin structures, corresponding
to the sign ambiguities of parallel transport of spinors around the 2 h cycles of the
homology basis. We shall temporarily fix such a spin structure §. Spinors can
now be viewed as forms of half-integral orders, and we can freely use the symbols



)

Superstrings, super-Riemann surfaces, and supermoduli space ’ 33

(d2)'/? and (dz)'/2 . It will be convenient to introduce the following indices for
spinors:

¥ =19,(d2)!/? ¥ =19 _(dz)'/?

(31) X = x;di(dz)“/z X= x;dz(di)_llz

which means that an index + (respectively — ) is half of anindex z (respectively
z ). The action for the Type II superstring [26] is the supersymmetric extension of
the sigma model action describing propagation of the bosonic string:

= 5= [ 220,20, - wra,08 — 20,2
(3.2 m

- 1 . _
+ x;d)i‘a,a:“ + xz Xz 1[)"_‘851”3227“ - EX?X; 'pi"pﬁ) .

The fact that the action can be written in terms of the complex structure alone and
does not involve the component x; of the gravitino means that it is Weyl and
super-Weyl invariant. Besides reparametrization invariance, whose infinitesimal
generator is a vector field §u™ , the crucial additional symmetry is supersymmetry,
whose infinitesimal generator is a spinor ¢ . More explicitly the fields in the theory
transform as follows

2 = Tyt + Y
Bt = (0,08 + 2xi¥)

8352 = "C*X;
5)(; = —2V;(+ .

(3.3)

We turn now to quantization. Before embarking onto a detailed treatment of gauge
fixing, it is useful to recall the principles underlying string scattering amplitudes.

(A) CHIRAL SPLITTING. In Minkowski signature for the world-sheet, the
world-sheet spinors 94 and ¢ are independent Majorana-Weyl fermions. In
two dimensions these do not exist in Euclidan signature. The way around this in
Euclidian signature is to view % and 4" as complex conjugate components of
a Majorana fermion, and try to separate in the functional integrals what can be
viewed as their respective contributions. They should correspond to factors which
are respectively holomorphic and anti-holomorphic in external parameters such as
moduli parameters, polarization tensors, and insertion points of vertex operators.
For example, in the bosonic string, the ficlds z* are real and do not admit an ev-
ident decomposition into left and right movers in the functional formalism. Nev-
ertheless, in the gauge-fixed form (2.30), the integrand for the bosonic partition
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function has effectively been split into holomorphic and anti-holomorphic factors,
up to the harmless term (det Im Q)!% . The expectation then is that something
similar should take place for the superstring. In mathematical terms, the problem
here is to factor into holomorphic and 4nti-holomorphic factors complicated ex-
pressions built out of determinants and Green'’s functions of Laplacians acting on
tensors and spinors of various weights.

(B) GSO PROJECTION. Chiral splitting as prescribed above is done with an
arbitrary fixed spin structure §. The factors one gets at this stage are not yet of
physical interest. Physical string scattering amplitudes are obtained by pairing a
holomorphic factor of one spin structure with an antiholomorphic one of another
independent spin structure, and sum over all possible choices of spin structures.
The physical reason behind this prescription can be easily understood in the case
of a torus. Let a torus be represented as a parallelogram in (o, 7) space. Recall
that the Ramond sector of the string corresponds to ¢ which are periodic in o,
while the Neveu-Schwarz sector corresponds to the anti-periodic ¢'s . In functional
integrals integrating with respect to fields periodic with respect to time T gives
the trace of (—1)Fe~PH . Anti-periodic fields produce instead the trace of e=## .
Thus to project on states of even chirality requires summing over both types of time
boundary conditions. Altogether the contributions of the Ramond and the Neveu-
Schwarz sectors are obtained by summing over all 4 spin structures for the torus
[27].

(C) SUPERSTRING MEASURE. Closely related with the splitting into left
and right movers required by the GSO projection is the problem of gauge-fixing
and reducing the evaluation of superstring scattering amplitudes so that of finite-
dimensional integrals. In the absence of anomalies, gauge-fixing should lead to
integrals over the space of supergeometries on a surface of genus h , namely su-
permoduli space:

(3.9 sM,, = {(9nmr X3) }/ Weyl x sWeyl x Diff (M) x SUSY .

Gauge-fixing in the superstring case is more difficult that in the case of the bosonic
string, if only because in this formalism we do not known of manifestly supersym-
metry invariant measures on spaces of various tensor and spinor fields. This can
be avoided by working in the superfield formalism, where the concept of super-
geometry can be given many equivalent reformulations which let us follow more
closely the methods of the theory of Riemann surfaces. Once the correct gauge-
fixing procedures are available, we can analyze the corresponding expressions for
superstring scattering amplitudes directly as integrals on supermoduli space, or by
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reducing them to integrals over moduli space by integrating out the odd variables
in supermoduli space. In the latter case, one may hope to rely then on the theory of
-modular forms. This reduction will have to be done with care, as we shall explain
in Section 8. In the other case, it would of course be necessary to develop fur-
ther function theory over supermoduli space, which would be interesting in its own
right. It is likely that ultimately the superspace formulation throughout will provide
us with the most economical way for evaluating scattering amplitudes. However
it is well-recognized to be especially treacherous, and should certainly be checked
against componentwise prescriptions.

4. SUPER RIEMANN SURFACES

Before proceeding with superstrings proper, we pause to discuss the notion of
supergeometry and super Riemann surfaces in some greater detail.

Supermanifolds in the sense of DeWitt

In field theory, fermions are represented by anti-commuting fields 1. More
precisely let C be the usual space of complex numbers, andlet {,,a = 1,2,...,N
be a set of Grassmann gencrators satisfying

(4.1) {6 G} =G+ GG, =0 .

In practice N is so large that it can be viewed as infinite. We can build a graded
Grassmann algebra by considering expressions of the form

(42 T=Ig+ Tg

where the «body» part of z is an element of C, and the soul part zg is of the
form

’ = za,,...,an a a

(4.3) Is=ET<'---C"
n=1

with the coefficients being standard complex numbers. A grading into even and
odd elements is obtained by viewing z as the sum of terms with an even number
of generators with terms with an odd number of generators. In particular it should
be pointed out that the even part in general will contain soul terms in addition to
the body. The space of all even elements is usually denoted by C, , and the space
of odd elements by C, , where the subscripts ¢ and a stand for commuting and
anti-commuting. Their elcments will be referred to respectively as ¢ — numbers
and o — numbers.
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We can now discuss functions of these generalized numbers, taking values also
in generalized numbers. Henceforth z will denote a ¢ — number, while 6 will
denote an o — number. A function f(z,8) can be expanded as

D

(4.4) f(2,6) = fo(2) + f,(2)6

with coefficients functions of ¢ — numbers alone. These in tum can be viewed as
characterized by their restrictions to the body part, since we can expand in a Taylor
series in the soul par. To integrate we need a notion of measure dzdf . The measure
dz on functions of ¢ — numbers should be viewed as a line integral measure on a
one-dimensional path within the space of ¢ — numbers C . It depends only on the
end points and is independent of the path chosen. In particular the symbol

/dzg(z)

stands for integration along any path having the same end points as C. In eval-
uating these integrals we can thus restrict the integrand to the body part and carry
out the integration as with regular numbers. The integration with respect to a —
numbers on the other hand requires rather different rules. We need specify them
only on the functions 1 and 6

/ do1=0

/d09=1.

A (complex) supermanifold is described by local coordinate patches (z,,8,)
which transform by regular functions on their overlaps:

(4.5)

2, = za(zﬂ, 05)

5.6
(59 6, = 0,(25,05) -

The transformation is regular in the sense that the superdeterminant

;]
det (6,“25 9,6 >
30'2ﬂ 60'95

is never 0 . A comprehensive treatment is in [28].
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Super Riemann Surfaces from transition functions

The notion of super Riemann surface is more restrictive than that of a one-
"dimensional complex supermanifold. To motivate it, we consider the model case
of the one-dimensional supermanifold C'!! = C, x C, . The key new ingredient
is a square root of the J, operator

47
7D D}=9,.

A complex supermanifold becomes a super Riemann surface if the operators D,
in each coordinate patch transform homogeneously into one another

(4.8) Dy, = (D, 6°) Dy, -
This means that the new coordinates (z4,6,) must satisfy
(4 9) Dgazp = OﬂD0°0ﬂ .

From the geometric point of view, the homogeneity condition (4.8) is equivalent to
the global existence of a non-vanishing section

(4.10) dzd8® D,

of a line bundle & which will be called the canonical line bundle of the super
Riemann surface. See [29] [35].

Super Riemann surfaces from supergravity

The definition of a super Riemann surface we just gave is perhaps the most eco-
nomical, and potentially most suitable for the future develompent of super algebraic
geometry. To make contact with string theory however, it is crucial to make use of
the definition of super Riemann surfaces arising from two-dimensional supergrav-
ity. From this point of view a super Riemann surface is characterized by a metric
and gravitino multiplet (g,,,,X3) , exactly as the fields appearing in the supersym-
metric sigma model (3.2). To unify them in a superfield formalism, we consider a
(212) real supermanifold of coordinates (¢',8',¢2,6%) on which is defined a su-
perzweibein (or superframe) E4 = d 2™ E,,# and a connection Q = dzMQ,, .
We recall the usual convention of denoting Lorentz indices by early indices (such
as a, A, a, etc.), Einstein indices by middle indices (such as m, M, u ), commut-
ing coordinates by Latin indices, anti-commuting coordinates by Greek indices. If
we define covariant derivatives on rank n Lorentz tensors by

(4.11) D=0, +inQ,,
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or in terms of Lorentz indices by

(4.12) D, = E,/*D,,

and will satisfy the commutation relatio;lé

(4.13) (D4, Dp} = Ty5CDg + inRyp

where T$; and R,p are respectively the torsion and curvature tensors. The
brackets {,} are regular commutator brackets unless both A and B are spinor in-
dices, in which case it becomes the anti-commutator. In supergeometry the torsion
is not zero. Rather it is defined by the Wess-Zumino torsion constraints

al

Tes=2(1%)p -

Te =T, =0
(4.14) b~ “af

Here ~4° are two-dimensional Dirac gamma matrices

{;y“’,yb} = _60b *

One way of motivating these constraints is the following. Choose Dirac matrices
of the form i i
(P = (P)_==(7), " =(7)_" =1
(1")ap=0,a7B.

On scalars, there is no curvature term in (4.13), and the (anti) commutation relation
between D, and itself just says that the square of D, is the operator D, . Another
way of motivating the Wess-Zumino torsion constraints is through the existence of
a complex structure [30]. The almost-complex structure

(4.15) IC = By B + B\ *C(5), B

is integrable (so that complex coordinates can be defined in patches) provided the
torsion constraints

(4.16) T, =T, =T, =T,,*=0

as well as their complex conjugates are obeyed. Conversely if we have a super
surface equipped with a tensor J,,V satisfying the integrability constraints, then
there is always a choice of supergeometry (EMA, Q,,) that satisfies the full tor- ’
sion constraint equations. This can be see as follows: when J is expressed in
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terms or real coordinates on the supersurface, J is a real tensor, with J2 = —1 .
Hence it has eigenvalues i and —i each with multiplicity 2 . Thus J,V de-
“termines the eigenvectors E,*, E,,* with eigenvalue i and E,, ~, E,,* with
eigenvalue —1, up to transformations within the eigenspaces of 1+ and —i respec-
tively: GI(1|1) ® GI(1|1) . For each choice however, (4.15) reproduces the origi-
nal J, and furthermore the torsion constraints (4.16) will automatically be obeyed
because the complex structure is integrable. Now we are interested is construct-
inglocal U(1) and super-Weyl invariant supergeometries, so those rescalings and
rotations in GI(1|1) ® GI(1|1) should actually correspond to symmetries, and
cannot be fixed. Hence J,, ¥ determines E,,# up to

GI(1|1) ® GI(1|1)
U eGun

which has dimension 2|4 , precisely allowing us to pick the remaining torsion
constraints in (4.14). Actually, the torsion costraint T',,% = 0 of (4.116) does not
figure in (4.14). Rather from (4.14) and the Bianchi identities, one obtains further
constraints T,,¢ = 0 , which T,,* = 0 is part of. In short, to every supercom-
plex structure J can always be associated a supergeometry satisfying the torsion
costraints (4.13). A more extended study of these issues is in [31]. It should be
pointed out that the Wess-Zumino torsion constraints are hyghly non-trivial, in the
sense that given any superzweibein, it is not always possible to solve for a connec-
tion satisfying these constraints. In fact it suffices to count the number of degrees
of freedom: 16 for E, 4,4 for Q,,, and 14 for the number of constraints in
(4.14). This means that the 8 components of E,™  E_™ cannot be chosen arbi-
trarily. In particular supergeometries form a complicated subvariety of the space of
superzweibeins and connections.

It is instructive to look at flat superspace C'!' from this point of view. There
the superzweibein is given by

E,* =6,
~ E,*=0
(4.16) L
E,*= (16,
Ef =6

and the covariant superderivatives D, ,D_ take the simple form (4.7).

The above is a natural extension of Riemannian geometry to the superspace
setting. We still need to make contact with the earlier component formalism (g,,,,
x3) . This is achieved by going to Wess-Zumino gauge [32]. The idea behind
this is that the superzweibein formalism is invariant under a very large group of
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symmetries, and that many fields in that theory are actually auxiliary fields. To
eliminate them, we begin by making a combination of superreparametrizations,
super Weyl and super Lorentz transformations so that the Taylor expansions of some
of the superzweibeins components coin¢ide with the flat case to first order

E*=68+6€e%+...

(417) “a : **a *
E” =Ge',,“ + ...

We choose the e*,e** to have the symmetries as the Dirac gamma matrices. In this

gauge we expand the other components of the superweibeins. It can be shown that

the expansion for E2, must be of the form

(4.18) E? = €&+ 6°(7*)2x g — 100 A/2

where A is a scalar auxiliary field. All other terms in the components EZ, Ef, EF
can be expressed in function of e2,, x} as well. Thus ignoring the auxiliarity field
A which has no dynamics, we have a correspondence between supergeometry in
the superspace formalism which is described by E MA, Q,, , and supergeometryu
in the component (Wess-Zumino gauge) formalism, which is described by the mul-
tiplet (g,n, X3) . The symmetries of the theory in the component formalism can
be identified as those of the superspace formalism which perserve Wess-Zumino
gauge. Now the infinitesimal generator of superreparametrizations is a supervector
field VM = (V™(z,%,0,0),V*(2,%,0,0)) . Expanding in 6,0 gives

Vrh=uvm+...
(4.19)

VE=(CF+...
where the dots stand for additional terms involving the 6,8 variables. In general
these terms are of course independent of the leading terms v™ and ¢* . However
the requirement that the superreparametrization (4.19) fix Wess-Zumino gauge ac-
tually constrains all the additional terms, so that in the component formalism the
infinitesimal generators of superreparametrization reduce to just a vector field v™
and a spinor {# . The corresponding symmetries acting on the multiplet (g,,,,,X3)
are precisely reparametrization invariance, and N = 1 supersymmetry listed in
(3.3).

It is now not difficult to see that every supergeometry is super-conformally flat
locally, in the sense that after local superreparametrizations, superLorentz, and su-
perWeyl transformations, it can be brought to the flat form of (4.16). Starting from
Wess-Zumino gauge, it suffices to find a supersymmetry transformation (3.3) so
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that x;. is O . After this a standard Weyl scaling will do the job. In view of (3.3),
this means that we need to find a spinor x so that

(4.20) x; = —20;¢".

This 0 equation can always be solved locally, which establishes our claim. In the
case of Riemann surfaces, any metric is equivalent by local reparametrization and
Weyl scalings to flat Euclidan space, but not so globally because of topological
obstructions. Similarly the equation (4.20) cannot always be solved globally. We
can determine the codimension of the § operator on spinors using the index theo-
rem and the dimension of conformal Killing spinors, exactly as we determined the
dimension of moduli space earlier (2.12). The outcome is that in addition to the
usual (even) moduli parameters for metrics, we also need odd parameters for the
gravitino field x;* . The precise count is

(4.21) dim sM, = (3h —3|2h - 2)

where we recall that supermoduli space is defined to be the inequivalent classes of
supergeometries as in (3.4). So far we have of course determined only the dimen-
sion of supermoduli space. We shall return to a more precise construction of sM
as a fibration later.

Supermanifolds from sheaves of graded algebras

We conclude this section with a brief comparison of the approach to super Rie-
mann surfaces adopted here to the more algebraic approach of many other authors
[33]. There are two main features which are different: first, in accord with the alge-
braic point of view a supermanifold is identified by its graded algebra of functions
rather that as a space of points; second, the z vanables are actually real numbers
and the anti-commuting variables are constructed cxphcnly along, instead of tak-
ing values in an auxiliary infinite-dimensional Grassmann algebra as in the DeWitt
definition.

" In the algebraic point of view, a supermanifold M Wm js given by a standard
manifold M™ of dimension 7, and by a (pre)sheaf of Z, — graded algebras A
with m odd generators. We do not distinguish between sheaves for which there
is an isomorphism of algebras preserving the grading which commutes with the
restriction maps of the persheaf. An example of supermanifolds is given by the
sheaf of sections of the full Grassmann algebra of a vector bundle over a man-
ifold M . In this case we even have a more refined Z, grading, which gives
the Z, grading by decompostion into even and odd terms. In Berezin’s termi-
nology [33], supermanifolds constructed in this way from vector bundles are the
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«simple» supermanifolds. From the more general supermanifold M("1™ | we can
also construct a vector bundle N'( M) . This is accomplished by first considering
quotients M, = A|Z*¥*!, where I* is the k — th power of the ideal generated
by the odd generators. The vector bundle N'(M) we were referring to is given
by M, fibering over M, , i.c., by the sheaf Z/Z? . Evidently we have inclusion
maps M, — M; — M, ... Obstructions to existence of projections the other way
around are cohomology classes in H!(M,,T ® A**N'( M)) . Thus a supermani-
fold is simple if the obstructions vanish. When they exist the various projections are
parametrized by H°( My, T®A?*N'(M)) . Another more practical way of deter-
mining whether a supermanifold is simple is to see whether one can constructa Z,
grading of locally free shaves. It is not difficult to give examples of supermanifolds
which are not simple. One the other hand in the C* category, supermanifolds are
all simple because of existence of partitions of unity.

This approach is especially precise and elegant. However it is not yet appropri-
ate for the supergravity formalism we have relied on so far, because all functions of
z are still commuting unless they explicitly involve the odd generators (compare
with, say, the expansion (6.1) below for scalar superfields, where the coefficients
Y4 (z) are anti-commuting after having expanded in the odd generators 6,8). It
is necessary then to introduce an auxiliary. Grassmann algebra with an inductively
infinite number of generators, as well as consider families of supermanifolds in the
algebraic sense, in order to arrive at the concepts we need here. We shall leave this
task to the future, and henceforth restrict oursclves to supermanifolds in the DeWitt
formulation.

5. HOLOMORPHIC STRUCTURE OF SUPERMODULI SPACE

In this section we shall show that supermoduli space has a complex structure,
with respect to which the operators D_ vary holomorphically. Thus the same ques-
tion arises for the superstring that had been an wered for the bosonic string: whether
there are superholomorphic anomalies and whether they cancel. We shall evaluate
the superholomorphic anomalies explicitly and show that they cancel in the critical
dimension d = 10 for the superstring and heterotic string with rank 16 gauge
groups [30] [3].

We begin by introduce the complex structure. Infinitesimal deformations of
supergeometries can be parametrized by SEA'} . Since it is more convenient to
work with Lorentz indices, we introduce instead

(5.1) H,2=EMsE,"” .

Because of the constraints, not all components of H,2 are independent. In fact
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they can all be solved in terms of H_—,H_% H_? and their conjugates. Simi-
larly the variation 6Q, of the connection can also be solved for. We can set to

-0 any component that can be removed by Weil, super Weyl, and super Lorentz
gauge transformations. This is in particular the case for the components H_, H_?
themselves. Thus deformations of super Riemann surfaces structures can be pa-
rametrized by H_?, H,? alone. In Wess-Zumino gauge, H_* can be expanded
as

(52) H_* = 8(e;™be,,* — 66x;")

which shows clearly that a variation of supergeometry does correspond to a varia-
tion of conformal structure g, and of gravitino field x;* . If we denote H_? by
H , and its conjugate H,? by H , the complete set of components H f is given
by

H-=H*=H*=0
H,=D_H,H_*=-D,H/2

1 i
+ _— —— — —
(5.3 Hy'=—>D D,H- >R, _H
__ 1.,
Hy™ = —5DlH
1
§Q_=iD,H+ =D, HQ, — HQ,

2

with conjugate formulas for H,*,H, %, H,?, H,?, H,~,H,*,8Q, . The key fea-
ture of the above expressions is that they involve only H and not H . This means
that the variations of the supergeometry §E, ™ and of the superderivative

(5.4) 6D_=6E_MD,, +insQ_

depends also only on the parameter H . The tangent space to supermoduli space is
then seen to split into two conjugate complements. To first order H can serve as
holomorphic coordinates for supermoduli space near each supergeometry. This is
the holomorphic structure that we were looking for.

To determine whether we can quantize and preserve the holomorphic depen-
dence on supermoduli parameters, we have to examine whether the logarithm of
the determinants of the corresponding Laplacians are pluriharmonic. For this we
need variations of supergeometries and super derivatives to second order. Unlike
the case for moduli space where these can be chosen essentially arbitrarily (such
choices are just choices of conformal gauges), these have to be solved for due to
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the more restrictive nature of the constraints of supergeometries. In the remainder
of this section we shall denote by E 4™ the reference supergeometry, and by E M
the new supergeometry obtained from the deformation HZ . The result is (ignoring
terms of the form H2 and H? which do not affect the pluriharmonicity)

EM=EM,4 %(D+H+ D_M)E;M -HEM

EM=EM_D_HEM+ —;—(D_DJI +D,M)E,M
(5.5) + -;-(D,H +D_K)E_ M

6Q_=1iD,H +iD_K + %D+HQ+ - HQ,

1 1
- ER_+M + -i-D_MQ+

where the new terms K and M mix both H and H , and are given by

1 -
- E'D_HH

D_H
D,D_HH+ HD,D_H - ?mjm )

[}
]

M
(5.6)
K

N —

This dependence on both H and H at the second order requires explanation. For
this we need a seemingly more abstract definition of the complex structure on su-
permoduli space. Recall that associated to each supergeometry EMA is a super
Weyl invariant tensor J MN given by (4.15). Thus supermoduli space sM, can
also be described as

{JMN’JMPJPN = _6MN}
sDiff (M)

(57) SMh=

This implies that the tangent space to sM,, at each J,,¥ can be viewed as the
space of tensors 8J,,V satisfying

(5.8) Ty (sMy) = {87, P Tp" + 7y T67,M = 0}
On this tangent space we can define an operator T whose square is —1

T:T(sM) = T(M)

5.9
G2 I(8J, ") = 1) PeTpN .
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This almost-complex structure on supermoduli space is integrable, since the one-
forms
r,Y=ds,~ i1,

satisfy
dr, V= 4l(rM”A1'“,,”+ Ty PAT,Y)
=0 moduloT .

(5.10)

Superholomorphic functions can be defined as functions satisfying
(5.11) Iof =idf.

It follows that the components J_*,J_*,J.*, J,* viewed as functions on super-

- IvYZz 12
moduli space are holomorphic to second order. If we evaluate them in terms of H

and H , we find

J *=2iH
‘ J*=—iD.H+D.M
(5.12) - =D, -M)
JF=D_J.*
Jf=D_I*.

Thus the equations (6.3) (6.4) really say that
1
(5.13) EM=F M, Ei]_*E+M+ %iJ_’E,M
and the variations (5.5) (5.6) of supergeometries are indeed holomorphic to second

order. It remains to discuss the connection and superderivative. Rcarrangmg the
exprcssnon for 6Q in (5.5) gives

1
(5.149) 8Q_=-D,J "+ —;—i]_*Q+ + 5”—29; +iD_(K+D,M)
which means that the new superderivative D_ can be written

_ 1., 1,
(5.15) D_=D_+7il_*D, + ~J_"D,
—inD,J_* —nD_(K +D,M) .

By Weyl and U(1) local invariance, we may conjugate with exp n{( K + D_ M)
and obtain a holomorphic dependence. This last observation has its analogue in
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the bosonic case, where it is the operators 8, which are holomorphic, and not
the covariant derivatives V; and D; on Einstein and Lorentz tensors. Thus (5.5)
(5.6) (5.13) (5.15) exhibit variations of supergeometries and superderivatives which
are all holomorphic to second order. They can then be used to evaluate the super
analogue of the holomorphic anomaly.

By a super heat kernel regularization, we obtain the following formula

sdet' D{™'/2 p¥
lo —
8 Sdet < @@, > sdet < ¥,|¥, >

1—-4n
5.16 =
(5.16) 5

bpby

(—1)2"/dzsdetE [—%RZHH+D,HD,,H

1 _ o
+ 7iR(4D,HD_H+ HD,D_H + HD_‘DJ{]

DSn—l/Z)

where @; and ¥; are the zero modes of D™ and respectively.

6. FERMIONIC STRINGS IN SUPERFIELD FORMALISM

We have already seen how the component version (g,,,,Xx3) of a supergeom-
etry can be given a succint explanation in superfield language. To complete our
translation of component into superfield formalisms and vice versa, we still need
a superfield version of the matter fields z#,¢* and of the supersymmetric sigma
model action (3.2). For this introduce scalar superfields X*(z,6,6) . Expanding
them in 9,0 gives '

(6.1) XP = zP+ Opb + Oy + 60F* .

Except for the auxiliary fields F# which will have no dynamics, the coefficients
of the superfield once again reproduce the fields of the component formalism. The
action we need is just the naive generalization of the sigma model action (2.3)

;
(6.2) I(Ey*, X" = g- /dzz(sdet E,")D_X*D X" .

This actually coincides with the component version of the action (3.2). In Wess-
Zumino gauge, the superdeterminant s det EMA can be evaluated to be

1 -
(6.3) sdet EMA =e [1 + §096""‘Xm'75 Xn]
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where we have denoted by e the determinant of the zweibein e_,° , ignored all aux-
iliary fields, and taken the gravitino x,,* to be traceless. The covariant derivative
- are given by

— 1
D X=x,+0 (3;:c+ Ex:d)f)
(64) ) 1
| v 00 (~pxix ¥ - it - 0,4t

where we have again ignored auxiliary fields. Integrating out the odd variables 6, 8
according to fermionic integration rules (4.5) gives at once the desired answer.

In the superspace formalism, the gauge-fixing procedures for the supersymmet-
ric sigma model action (3.2) are essentially the same as those developed for the
bosonic string. We shall write down the versions which are the analogues of the
general gauge-fixed formula (2.32), and of the formulation with ghosts.

General gauge fixed-formula

Let § be aslice of (3h — 3|2h — 2) dimensions in the space of superge-
ometries, transversal to the orbits of the guage groups. Let (m;) = (7;,{,),J =
(j,8),j=1,...,3h=3,a = 1,...,2h — 2 be coordinates for the slice, with
7; the even, and ¢, the odd coordinates. As before we need the super analogues
of Beltrami differentials to parametrize the tangents along the slice S . Recall that
infinitesimal variation of supergeometries are of the form H¥% , and infinitesimal
deformations of super Riemann surfaces structure can be parametrized by the sole
components H = H_*,H=H L% (c.f. (5.3)). This suggests introducing the «su-
per Beltrami differentials»

(6.5) pj=(H_*);=EM8,,E\*

which can be viewed as tangents to the superslice S atthe geometry E AM . We
shall also require for each supergeometry E,M a basis ®,,K = (k,b),k =
1,...,3h—=3,b = 1,...,2h — 2 of zero modes for the adjoint D>/* of the
gauge-fixing operator. They will be called super quadratic differentials (although
their U(1) rank is rather 3/2 !). Their number is the same as the dimension of
supermoduli space. The super quadratic differentials corresponding to K = k will
be odd, while those corresponding to K = b will be even. We can now write down
the expression for the gauge-fixed path integral corresponding to the action (3.2),
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which is the same as the action (4.23):

- _s. |sdet < p @y > |?
Z.= | d5h-5m.d5h-5 |s JIPK
§ ,[g TS T et < @, 0, >

' 1/2 8n2sd Df Do -5
t ~3/2 wesdet D_D_
[3 det D_D_ ] I: [dzsdet E

(6.6)

As in the bosonic string, the terms involving the determinants of D9 result from
the free Gaussian integrals over the scalar superfields X# . The remaining terms
arise from the factoring out of the volumes of the gauge groups. The super Weyl
symmetry is anomalous, and the symmetry in only restored in dimension d = 10,
when the anomalies between scalar superfields and determinants Di/ 2 cancel. We
have restricted ourselves to this case. We have also written explicitly an index § to
emphasize that so far the path integrals have been taken with respect to the chirally
symmetric action (3.2), and that all left and right spinors are taken with respect to
the same spin structure § . In particular the GSO projection is not yet enforced.

To do so requires cancellation of holomorphic anomalies. We can now make use
of the explicit formula (5.14) for holomorphic anomalies. Since the U(1) ranks
of the ghost determinants and matter fields are —1 and O , we see that the holo-
morphic anomalics of matter and ghosts cancel in the critical dimension d = 10 .
Now the (conjugates of) the zero modes of D% donot appear in the gauge-fixed
formula (6.6), although they are required for a full cancellation of holomorphic
anomalies. A similar situation occurred in the gauge-fixed bosonic partition func-
tion (2.16), which was responsible for the term det (Im Q)!? in the final formula
(2.30). More systematically, let &; be a basis of these zero modes, henceforth
referred to as super abelian differentials. For even spin structures &, there are
generically h of them. We temporarily delay the discussion of the odd spin struc-
tures case, since they present new difficulties, and their contributions to the partition
function Z; vanish due to the presence of zero modes. On super Riemann surfaces,
there is an instrinsic notion of integral of 1/2 — forms

(6.7 | /dz&;

along cycles on the surface. After a choice of homology basis as in (2.23), we can
fix a basis of super abelian differentials by

(6.8) dziv; = 6,
A
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and define a «super period matrix» Q 17 by
(6.9) f dzir, = Q.
B,

We shall describe these notions more explicitly in terms of g, and x,;* inSection
9. An adaptation to the super case of the arguments for the Riemann identities gives

6.10) < @fldy >=1mQy,

and the partition function (6.6) can be put in the form
(6.11) Zs= /ds"‘sm,ds"‘srh,]f6]2(dct Im Q)3

where we have absorbed the term sdet < pu;|®, > in the factor F; whichisa
holomorphic function on supermoduli space.

We can now carry out the GSO projection. Since the super period matrix de-
pends on the spin structure, it is necessary to separate also left and right movers in
the term Im € . This is achieved by rewriting this term as a Gaussian integral over
parameters py,p=1,...,10

(6.12) Zs= /ds"‘sm]ds"‘sfr“n,/dp’,‘|e"‘dl‘ﬁ”';|2]f5|2.
Finally the superstring partition function can be constructed as
Z'lype“ = /dSh_stdSh—st /dp‘;

(Z( _ 1)0(5) e‘rri'P’;ﬁup’; f&) (Z eﬂid;ﬁ”p’;( _ 1)6(3) j:B)
6 )

where the relative signs (—1)°(®) between even and odd spin structures is the same
for left and right factors in the case of the TypclIA string, and opposite in the case

(6.13)

of the TypelIB string. For later reference we write down also the ghost version of
the gauge-fixed partition function.

Superghost Formulation

The gauge-fixed Z; of (5.5) can be conveniently rewritten in terms of free in-
tegrals by introducing superghost ficlds B,C of U(1) ranks 3/2 and —1 re-
spectively. The action for the supcrghosts is taken to be

(6.14) I,,(B,B:C,C) = %/dzzE(BD_GW BD,0)
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which admits the same symmetries as the original matter aiéfion (4.23). To convert
the jacobians in (6.6) to an integral over superghosts, we note that

/ D(BBCC)e " *[[ 16(< uglB > * =
K

(6.15) q o |2
sdet < pg|®; > t ~3/2
sdet < |0, > oIt P-D-)

and thus the full expression (5.5) can be recast as

Zg= /D( BBCCX#)el~1(ELX")+1,,(B.C:B.0))

(6.16) 2h-2 34-3
I 16C< s B> T] <ulB> 1.
a=1 Jj=1

Here we have made use of the fact that for integrals over anti-commuting variables
@ , the Dirac delta function §(8) isthe same as 6.

7. HOLOMORPHIC STRUCTURE OF SUPERSTRINGS“IN COMPONENT
FORMALISM

Although we have succeded in constructing a holomorphic integrand for the
superstring partition function in the previous section, it is certainly by no means
evident how to accomplish this in presence of vertex operators corresponding to
emission and absorption of string states. Also the case of odd spin structures would
have to be trated then, since they do contribute to the general scattering amplitudes.
For this we need the component formalism. As a by product, we shall obtain a rather
complete translation into concrete geometry of the rather abstract objects of ana-
lytic supergeometry encountered in Section 6. Such a translation is indispensable
if we are to make contact with the better understood geometry of moduli space and
modular forms.

Gauge-fixing in component formalism

We need to rewrite the gauge-fixed formula (6.6) for the partition function in
component language. We shall begin with the superghosts, since they do not pose
any problem from the point of view of holomorphic splitting. Expanded in compo-
nents, the superghost fields B and C become

B=p+06b

7.1
(7.1 C=c+ by
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where we have neglected auxiliary fields. The superghost action (5.6) can be
worked out to be in components

. =
Iagh = Iagclf+ < XISgh >+< X'Sgh >

(7.2) 1 ) v 1 -
= ﬂ/d 2(b0;c + BI;7) _ﬂ/d zX; Sgp + C-C.

where S, = —;—b'y - %ﬂ&,c — (0,B)c is the ghost part of the full supercurrent

(7.3) S=8, - %w:a,z# .

Substituting in (6.6) gives the gauge-fixed partition function in component language

34-3 2h-2
(e 7 [DeaBrervn T <uip>P 1]
: =1 a=1

16(< gl B >)[PelXil8>+<xi18>) o=k [ 4 oxixidh¥” -1z,

Here the total kinetic energy for both matter and ghost fields is

[ Z1_ / d22(8,7#8,3" — PO, 9% — ¢*8,¢*)
(7.5) "

+ L/dzz(baic+ Bo;y+ c.c.) .
27

From this it is evident that the ghost contributions are holomorphically split. Thus
we need concentrate only on the matter field contributions. We shall actually do it
not just for the partition function, but also for any insertion of massless particles
vertices.

Quantum scalar superfields

" 'We have seen the vertex operator for emission of massless particles for the
bosonic string in (2.8). One of the advantages of the superfield formalism is that it
allows us to guess easily the vertex for massless particles in the superstring. The
answer is

(7.6) V(z,k*) = €, D_X*D, XPe™Xs .

We have left out the usual overall integration in the super insertion point z. As
in the case of the partition function, the superstring amplitudes for scattering of



52 E. D’Hoker, D.H. Phong

massless bosons are only obtained after separating out holomorphic from antiholo-
morphic factors in the functional integrals, and summing afterwards over spin struc-
tures. To carry this out, it is convenient to work with the generating function for
the vertices (7.6) rather than with the vertices themselves:

(17 V(z,1,(,C k) = explikX + ¢*VED, X" + (*VED_XP1(2) .

Thus we need to consider amplitudes of the form

N N
(7.8) <Hv<z.~,i.~,<.~,z.-:k.-)> = / DXt [T V(2 %, G k)
=1

X i=1

with of course the case of no insertion reducing to the partition function discussed
at length in Section 6 in the superfield formalism.

We have already seen that even in the case of the partition function alone, sepa-
ration of left and right movers requires the introduction of intenal loop momenta.
It is easier to trace the origin of the difficulties in component language.

o The functional integrals in z# and ¢* in (7.8) will lead to a product of de-
terminants and combinations of Green'’s function on scalars and spinors. Although
the determinants themselves will combine with their ghost counterparts to produce
holomorphically split terms according to the Belavin-Knizhnik theorem, no such
theorem holds for the Green’s functions. For example, the scalar Green'’s function
G(z,w) defined by

(7.9 G(z,w) =< z(2)z(w) >

is a real-valued function which satisfies

W

2
0;0,G(z,w) = —=2mb(z,w) + sz—-z\/a
h

9,8,G(z,w) =2mb(z,w) — E wy(z (Im Q) (w) .
1,J=1

(7.10)

The additional terms on the right hand side of (7.10) are due to the presence of
zero modes for the operator 3 on scalars and its adjoint. They are clearly obstruc-
tions to holomorphicity in both variables z,w , and the implicit moduli parameter.
Similarly the Green’s function for spinors could have zero modes. Generically the
number of zero modes is 0 for even spin structures, and 1 for odd spin structures.
This is one of the main reasons why the odd spin structure case is more difficult
than the even one.
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e The holomorphic structure of supergeometries and supermoduli space force
the inclusion of complicated terms coupling both chiralities. We have seen an ex-
-ample of this when discussing variations to second order of supergeometries in
Section 6. Even more exmlicitly, the very action of the supersymmetric sigma
model contains the chirally mixing term x3x; ¢4 , and the same is true for su-
perderivatives such as those appearing in (6.4).
It is remarkable that nevertheless the correlation functions of (7.8) do split holo-
“morphically after introduction of internal loop momenta. To show this, we shall
provide explicit rules for evaluating them that will only involve notions that are
manifestly holomorphic in supermoduli parameters, insertion points z, , and polar-
ization tensors (; .

We need some ingredients of function theory on Riemann surfaces. The basic
notion is that of the prime form F(z,w) , which will serve as a version of z —
w which nevertheless encodes the complex structure of the underlying Riemann
surface. Recall that given a Riemann surface with a choice of homology basis
(2.28), the complex structure is characterized by the period matrix Q (2.29). The
theta function with characteristics 9[ 6] is defined by [39]

961(2;, Q) = Y explmi(n +8)Q;;(n; + 8))
(7.11) nezh

+ 2mi(n; + 6})(2, + 6',')] .

As a function of 2, it has the same parity as 44'6" , that is, as the spin structure
§. If & is odd, there is at least one holomorphic spinor h; (generically exactly
one), which can be written down explicitly as

A 1/2
(7.12) hg(z) = (Ea,o[a](o,n)w,(z)) .

I+1

The prime form E(z,w) can now be defined as [40]

_ 18] (f.: ‘*’1:9)
(7.13) E(z,w) = ———hs(z)hb(w)

The prime form is actually independent of the odd spin structure §. It has the
property of vanishing only when z = w, of being holomorphic in all variables
2,w,Q;; . Strictly speaking it is defined only on the universal covering of the
Rieamann surface, where itis a (—1/2,0) form in each of the variables z and
w. Thus it is multiplevalued on the Riemann surface. However the multiple-
valuedness will cancel out in all physical string amplitudes.

It is convenient to summarize the results in the following
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Chiral splitting theorem

(A) Up to a local superholomorphic anomaly, the amplitudes (7.8) can be ex-
presscd as

N
< HV(zs»in(iszi; k) >x=

(7.14) =1 .
(ZW)]‘)&(E’C;)Adﬁlfs(z;,Cg,Q,X;3 ki)pl;)lz

=1

where the conformal blocks Fj* satisfy
e FP* is meromorphic in z;, holomorphic in ¢;,Q;;,and x; ;
e Ff isa (1/2,0) form in each of the insertion points z;;
e F has non-trivial monodromy

fam(zi+ 6;;AK;<:‘)01X;;IC?)I7‘I‘) = fgn(z.sCf‘,Q,X;;kf;d;)

Fo(z; + 6ijBKx<:‘rQ;X;; ki, pp) =

7.15
( ) F&(Z{;C#:Q)X;;ki!p‘;*'81Kk;")

e F§* isunique up to a constant phase.
(B) The conformal bloks F§* are given by the following explicit formulas in
components

Fi = zo-“’z,‘}’z,& <expL> evevd

(7.16) 10 )
Fit =2y ZI/“[d)\ <exp[L+ A(hg/*)]1 > odd 8
where
=—./-d22x,1/)“8 ¢ + izp“f dzd,z%
(7.17) .
+ Y Lkt XE(z) + PO, XU(7)]

i=1

and

* = ——X;a Th + E(zk,o, +¢M8(z—2z) .



Superstrings, super-Riemann surfaces, and supermoduli space 55

The effective chiral superfield X! and derivatives 9, are defined by

Xy =ah+ 0yl

(7.18
7.1 0, =0y+ 60,

and the expectation values <> are understood in the sense of Wick contractions
of ¥ and ¢ according to the following rules

<z, (2)z,(w) >=-log E(z,w)

_ o EI(ffw, Q)
(7.19) = <DV (W) > = Si(z,0) = Fr=n 5510, 9)
1 Z?:l 9,91 81(J, w, Q)W

E(Z,W) Z,}+l 62119[6](079)WI

even §

- <P ()Y, (w) >=

with W, an arbitrary generic h — vector. Finally Z,(Q) and Z,, ;(Q) can
be viewed as the chiral scalar and Dirac determinants respectively, up to a local
anomaly which will cancel out in superstring amplitudes

8n2det’'Ag .
det(Im Q) [d2z,/5 1Zo(D)]
dellétél/z
—_ = Q).
< h6lh6 > |Z1/2,6( )l

The point of these rules is that contractions with effective chiral fields will always
give manifestly holomorphic expression with respect to all variables, unlike con-
tractions with the original fields z* and % .

(C) Altemnatively the conformal blocks F;" are given by explicit formulas in
a manifestly supersymmetric way (say for even spin structures)

F =Z,;"6°(f2,x;) < cxp[ip‘,‘f dz0, X+
BI

N
Y GkEXE(z) + ¢4B, XE(2))] >

i=1

where

1
(7.20) Z,;js = Z(,“Zl/z < cxp(—n/.dzzxggbfz‘;) >0,
Wick contractions are perfomed with

< X, ()X, (w) >= —log &(z,w)
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and Q, &; are supersymmetric versions of the period matrix and the prime form to
be discussed in Section 8. The odd case will also be given there.

(D) Finally the contributions of the superghosts are manifestly split into |Ff h
(up to a local anomaly) without recourse to internal loop momenta pf . Thus the
amplitudes for the Types II A,B superstrings at loop order h are given by

12

N
<HV(znin§nCﬁ,k;) >1ype II=./.dp‘I‘/ ded’ﬁlJX
(721) i1 M

<E(_l)u(6)fgh}-6m> (E(_l)é(&j:sghj-sm) )
é 8

The choice of phases of F; is such that they are un affected by modular transfor-
mations. As in Section 6 the term o(§) is O or 1 on even or odd spin structures.
For Type Il A(B) o and & are the same (opposite).

We note that these effective rules essentially amount to replacing all fields by
their formal chiral components, drop all the chirality mixing terms (in particular
this reduces all the complicated super derivatives of supergeometry by their flat
counterparts, so that we formally get back to the familiar setting of conformal field
theory in conformal gauge), on the following key conditions. First the propagators
should be the ones built out of the prime form; second, we have to introduce internal
loop momenta flowing through the B, cycles. These are the prescriptions that
encode the non-trivial topology and the complex structure of the underlying surface.

The full proofs for the chiral splitting thcorem are in [38].

8. THE SUPER PERIOD MATRIX

We would now like to analyze the ambiguities in superstring scattering ampli-
tudes which had been alluded to in the introduction. First we explain the nature of
the ambiguities found, and then we indicate how they can be resolved.

A. Ambiguities

Some of the difficulties uncovered recently in perturbation theory for super-
strings are the following:

¢ In[10]itis pointed out that zero modes for the scalar laplacian seem to lead to
a positive additional term in the partition function for the Type II superstring, when
compared with the partition function for the heterotic string. Since the partition
function can be interpreted as the space-time cosmological constant, this certainly
is not consistent with the expectation that both should vanish in flat space-time due
to space-time supersymmetry;
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e In[12] [41] the value of the cosmological constant for the heterotic string at
two loops is found to be zero by taking the p, of (5.8) to be delta functions sup-
-ported at branch points. A generic choice of points on the surface however seems
to lead to a non-vanishing answer. Why are branch points singled out, otherwise
than by mathematical expediency? Since choices of points are jus choices of gauge
slices, this would signify a breakdown of gauge invariance unless we can explain
the privileged role of branch points;

e Finally in the BRST formalism [5], different choices of insertions for the
picture-changing operator lead to total derivatives on moduli space for the integrand
in the partition function [42] [11] [13]. These total derivatives are however defined
only locally on moduli space, so the cosmological constant appears to be ill-defined,
a situation resembling the Wu-Yang analysis of the action for an electric charge in
the field of a magnetic monopole.

In view of our discussion of holomorphic splitting, we can readily see that the
prescription of matching left and right movers at the same internal loop momenta
does reproduce the heterotic string from a chiral halr of the bosonic string and the
other chiral half of the Type II superstring. In fact, heterotic supergeometry corre-
spondsto x; = O . The scalar superfields contractions in a heterotic supergeometry
background can be evaluated as before, giving the same answer as (7.10) but with
X; setto 0

i=1

N N
< H V(z;,2,¢,$ k) >x,ner=< (2m) 105(2 k")
(8.1) i=1 .

Adﬁfs(%,fgygyxzi kiaﬂ;)j:a(ii’EﬁQ)O; k.’;P‘]‘) .

On the other hand the chiral halves of the bosonic string can similarly be obtained
from the Type II superstring with both x} and x; setto 0. We can recognize
then (8.1) as being built from Fy(z;,¢;, Q, X} k;, ) , which is a chiral half of the
Type 11, and Fy(%;,;,Q,0; k;,pf) , which is the half of the bosonic string of the
opposite chirality. Thus even after summing over spin structures and incorporating
ghost contributions, the heterotic string and the Type II string partition functions
share the key common factor which will cause them to vanish simultaneously. In
retrospect, the first apparent contradictions noted above are due to the absence of
internal loop momenta.

To get an idea of what could be the probelm with the next two objections, we
discuss briefly how the picture-changing formalism emerges from the guage-fixed
superstring (7.4). Since prescription of internal loop momenta can reproduce the
superstring from the heterotic string, we shall limit our discussion to this latter case
and drop the x; terms from the action (7.4). In (7.4) no specification has been
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made as yet about the choice of gauge super slice 8. The goal is to reduce the
integral over supermoduli space in (6.5) (7.4) by a suitable choice of superslice, and
integrate out the odd variables. The choice is the following: selecta 3h — 3 slice
S of metrics g,,, for moduli space pardmetrized by 7;,4 = 1,dots,3h — 3, and
2 h—2 sections x, . Thenthe superslice S istakentobethe (3h—3 |2 h—2) slice
givenby g, ., x = Y 242 ¢ x,) . In particular g, is independent of ¢, . With
this choice the super Beltrami differentials u; of (5.8) are the standard Beltrami
differentials associated to the slice S, while the super Beltrami differentials p,

are just the x, . The gauge-fixed partition function becomes

3h-3 -3
Z5=/d 7,37,

(8.1) 2h-2 ) 2 o
H dcadCaI < ”’]lb > IZI6(< X.Jﬂ >)|232—l <°<"°|S>e-1m|
a=1

where S is the supercurrent (7.3) and by IT% we have denoted the kinetic energy
terms of both matter and ghost fields (7.5). The fermionic integral with respect to
¢, cannow be evaluated immediately, and we obtain

Z; = /dah-a,rjdsh_s,-rj

(8.2) 2h-2 i o
T d.dlal < mlb> P18(< xalB >) < xoIS > [Pe= .

a=1

The operator 8(< x,|8 >) < x,|S > is of course rather complicated. We only
obtain a local operator by taking the x, to be Dirac delta functions supported at
points z, . As shown by Verlinde and Verlinde [42] from operator product expan-
sions, the operator Y'(2,) obtained this way

(8.3) Y(z2,) = 8(B(2,))5(z,)

is exactly the well-known BRST invariant picture-changing operator of Friedan,
Martinec, and Shenker [5] which had already played an important role in super-
' tring field theory [43]. In this way from the functional integrals one arrives at the
prescription suggested by BRST invariance

3h-3 2h-2
(8.4)  Z;= /d""3'r‘.d3"‘3'7; T 1 <mlo> I I] Yz e,

=1 a=1

In this derivation the insertion points z, are arbitrary generic points, and the value
of Z should not depend on their choice. However, a BRST argument shows that
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a change of z, is the samc as a BRST transformation, and will not leave the inte-
grand unchangcd but rather result in a total derivative in moduli parameters. This is
-actually a very serious difficulty. In fact the points 2, should be properly thought
of as sections of the universal curve above moduli space. This curve admits no
global continuous section. This means that we are forced to cover moduli space by
patches, and choose insertion points on each patch. The total derivatives caused by
changes of insertions on the overlaps prevent the sum of the integrals over parches
from having any intrinsic meaning.
What could be the reason for these ambiguities? A close look at the above
derivation of the picture-changing formalism shows that a key step is the use of the
apparently natural projection

(s Xm)
(8.5) !
gmﬂ
to reduce integrals over supcrmoduli to integrals over moduli space. The problem is
that this projection is not invariant under sypersymmetry! That is, it will in general
be the case that under a supersymmetry transformations

(mnr Xm) = (Gun + 89y X + OXT0)
Fmn — Oon + 69 -
We are then led to the question of finding a supcrsymmetric, conformally invariant,
modification of the metric g,,, . There is no obvious candidate for amodification of
9mn as atensor. However if we view the conformal class of g,,,, as characterized
rather by its period matrix, then the natural candidate is the super period matrix
Q ;7 » which has appeared earlier in the superficld formalism (6.19). We shall now
show that the holomorphically split amplitudes of (7.14)-(7.20) also lead naturally
to the same matrix, so that holomorphic splitting and the search for the correct
superstring measure reinforce one another in suggesting the super period matrix as

the fundamental starting notion.

B. The super period matrix as covariance of holomorphic amplitudes

" Retuming to the holomorphically split amplitudes (7.14)-(7.20), it suffices to
consider the case of no insertions, so that we arc dealing with the measure alone. It
is natural from this point of view to introduce the covariance of these amplitudes,
viewed as Gaussians in the internal loop momenta pf . Itis evidently a modification
of the usual period matrix Q . Since the local anomalies have cancelled out, this
matrix is supersymmetric. We can expect it to be the super period matrix, which
will turn out to be indeed the case

A

1
(8.6) Q) = 5 =0 1og FP(Q, X35 p) -
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C. The super period matrix as a supersymmetric correction to the period ma-
trix :

To obtain a supersymmetric correction, we begin by introducing an effective
Dirac propagator 35( z,w) . It is defined by the equation

(8.7) 8;8;(z,w) + él—"x; /dzuxzataulog E(z,u)8;(u,w) = 278(z,w)

which can be solved by a perturbative expansion. This expansion will terminate,
since in practice the gravitino x;* will depend ononly 2h—2 Grassmann valued
parameters. The super period matrix is then given by

(8.8) Q,=9,- 8—’1; /dzzdzwwj(z)x;+35(z,w)x'{wJ(w) .

From the transformation laws (3.3), it is not difficult to check that 8Q =0 under
supersymmetry.

D. The super period matrix as periods of super abelian differentials

This was how the super period matrix appeared in the first place. On a su-
per Riemann surface with even spin structure there will be h superholomorphic
1/2 — forms, which generalize the usual abelian differentials of the first kind.
Given a homology basis A;, B, we can choose a basis &; dual to the cycles A .
The super period matrix is then the matrix of periods of the @, around the cycles
Bj; , with a suitable notion of line integrals (c.f. equations (6.8) and (6.9)). The
component version as well as the odd spin structure case is presented in Section 9.
It can then be checked that this agrees with the previous definitions.

Thus both considerations of supersymmetry and holomorphic splitting strongly
indicate that we should view parametrize supermoduli space in terms of ( Q 17, X3)
rather than (Q;;, x;) . The projection &5, x) — Q,; is well-defined under
supersymmetry, and should be the one used for integrating out the odd variables
in supermoduli space. We shall discuss this projection as well as a more precise
construction of supermoduli space as a fiber bundle over the space of super period
matrices in Section 10. Presently we would like to point out that this could give
an explanation for why insertion at branch points seem to be the only ones leading
to the expected value for the two-loop cosmological constant, which is one of the
challenging puzzles mentioned in the above list.

At h = 2 the number of odd supermoduli is 2h — 2 = 2, and for arbitrary
insertions z,,z, the gravitino x} is of the form x; = ¢;8(2,2y) + (;8(z,2,) .
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Substituting x} in (8.8) gives

a

(8.9) Q= Qpy — 7-0Gu(2) Sz, 2wy (2)

where S;(z,w) is the Szego kemel of (7.9). However explicit formulas for the
Szego kemel at genus 2 are available in terms of the surface as a double cover of
the plane with cuts [40]. These formulas show that the Szego kemel vanishes at
branch points, so that with this choice of insertions, the super period matrix and the
period matrix coincide. This is the reason why the superstring measure obtained
earlier using the standard period matrix gave the correct answer only at branch
points.

9. SUPERANALYTIC FUNCTION THEORY

We have obtained in Section 7 explicit prescriptions for holomorphic splitting
of all amplitudes needed for scattering of massless bosons in component language.
We have quoted the answer for a manifestly supersymmetric formulation in terms
of the super prime form. We shall now provide a more complete discussion of
analytic function theory on super Riemann surfaces.

Super Abelian Differentials

We begin by a more explicit formula for super Abelian differentials. In compo-
nents, a super Abelian differential is a U(1) rank 1/2 tensor satysfying A
= 0. Expanding & gives

(9.1 b=, + 00,

and the equation for holomorphicity in presence of a non-vanishing gravitino field
becomes
~ 1
Oz, + =x;@,=0

(9.2) 2

L] .
o;0 + -z—az(x;uu) =0.
For such forms we can define the line integrals
W w l
(9.3 / W= / (dzb, — Ed ZX;0,) + 0,0, (w) —0,0,(2) .
z z

which are invariant under continuous deformations from z to w . The line integrals

satisfy
z z
D+/G)=&) D_/G)=O
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For even spin structures there are precisely h solutions to the equation (9.2). With
canonical normalization (6.8), they can be written explicitly as

(@,) =wi(2) — /dzwazyazawlog E(z,w)Sb(w,y)x;(G;y)I

1
16 w2

(9.4) 1
(@,), = _Er-/dzwss(z,w)x;,(&w),(w) .

The super period matrix Q isdefined as usual by (6.9). We get yet another formula
forit

The case of odd spin structures is more difficult, due to the presence on an additional
super abelian differential &, generated perturbatively from the holomorphic spinor
hgelta of (7.12)

W = (@,)g + 6(&,)

1 A
08 @) =h+ 3= 424820 B0
(@,)9(2) = 4_‘; / d2wd,d, log E(z,w)x5(@,)o(w) .

Its periods are given by
(9.9 }( &y =0 0y =Qp -
A B,

For generic super Riemann surfaces the equation (9.2) has no odd Grassmann val-
ued solutions. The reason is that the zero mode h; imposes a constraint

/ d2zhsxii, =0
which due to the Grassmann nature of x; forces @, to vanish. However one
may consider more general solutions of (9.2) which may be meromorphic, or holo-
morphic with non-trivial monodromy. One such set of solutions @, is given be
the analogues of (9.4), but with the propagator S;(z,w) replaced by the multiple
valued propagator of (7.19). Their monodromy can be evaluated easily

We(w+ A;) =g (w)
(9.10) K oK .
Og(w+ Bp) = bg(w) + QKOWL%(w)

‘.
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where

(9.11) = Wy {Ew,f wo(w)/ wo]

i=1

The super period matrix is no longer well-defined. However we shall still define
it by the formula (9.5), keeping in mind that it is a formal object. This will also
be the case with the super prime form below in the odd spin structure case. We
can view their use at this point as a shorter way of rewriting the amplitudes Fj*
of (7.14)-(7.20). It is however quite likely that a proper setting for such objects
can be found, upon which their role may become central to our understanding of
superholomorphic function theory.

Next the super prime form £;(z, w) generalizes the ordinary prime form, and
its main properties are

o superholomorphic dependence on z, w and supermoduli parameters;

e ittransformsas (—1/2,0) x (-1/2,0) formin z and w;

o &(z,w)=0 and D ,&(z,w) =0 ifandonlyif z=w;

e it has non-trivial monodromy

Es(z+ Ak, w) = E(z, W)
(9.12) A Y A
E(z+ By, W) = E(z, w) exp [—urQKK —21n/ wK] Dy
z
with
Py =1 §even
(9.13) z v
D, = exp [/ (:IOWK/ wo] 6 odd .
In components the full expression for the super prime form is
log 56(2 w) = log E(z,w) — 6,0,5;(z,w)
__e /d2 9, log Ey, )36( v)

E(y,2)
(9.14) 2 E(y,2) a
_ Gow/d yaylog By, )Ss(w,y)
212 ) + E(y,w)
32”2/d zd yxzazlog E( S( ,¥)x; 0, log 5y )

where for odd spinstructure it is uriderstood that we use multiple-valued fermionic
propagators. This completes our description of super Riemann sufrace function
theory.
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10. SUPERMODULI SPACE AND THE SPACE OF SUPER PERIOD MA-
TRICES

We return now to the geometry of supermoduli space, from the viewpoint of
super period matrices. Let 13,, be the space of matrices Q 7y Which arise as super
period matrices of some two-dimensional supergeometry. The space of superge-
ometries admits the natural projection

(9 Xm)
(10.1) l

A

Q

onto P. A point in sM, represented by a supergeometry (g,,,,Xm) Can be
represented also by (Q, x%) . Supersymmetry transformations acting on the space
of supergeometries leave the corresponding super period matrices invariant. The
modular group Sp(2h,Z) acts on the on the space of supergeometries and the
space of super period matrices ‘f’h , since it corresponds to a change of homology
bases, and one definition of € exhibits it as the periods of dual bases of super
abelian differentials (6.8) (6.9)

M:(Q,x%) = (MQ, Mx2%)

(10.2) N n n 1
MQ =(AQ + B)(CQ + D)™ .

Thus we can take quotients of the above projection by both supersymmetry and
modular group actions, and obtain the projection between cp_sct’ spaces

S el
(Gmns Xm) € [SUST=DI xWeyl xoWe io\:vne;? issWey' ]
(10.3) {
Q € ‘P,,

We now retum to the issue of the superstring measure. We have seen that due to
non-invariance of the period matrix Q;; under supcrsyﬁjjhetry\transfonnations,
we cannot parametrize supermoduli space by patches Qf"‘the form (g,,, € B,,
22" 2 ¢,x,) with B, acovering parch for moduli spacc Besides, in the De-
Witt notion of supermanifolds which we rely on for supergravnty, even the metric
9n and hence the period matrix Q; has inherent soul coordinates. Thus even
a statement linking directly Q,; and moduli space at this point is inappropriate.

Rather we should start form a covering Ba of the space ’f’h of super period ma-
trices. If the covering is fine enough, it is reasonable to expect a generic choice of
X, on each patch will give a parametrization for supermoduli space. We can now
use these slices for gauge-fixing, using the gauge-fixing methods and holomorphic
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splittin of Sections 6 and 7. Invariance of the super period matrix under supersym-
metry allows us to integrate out the odd variables {, without any ambiguities. The

- answers will agree exactly on overlapping parches, and not just up to a total deriva-
tive. In this way we arrive at an integral on the space 13,, . A key observation now
is that integrals on supermanifolds should be viewed as a multi-dimensional ver-
sions of line integrals over cycles within the supermanifid, which can be deformed
to the body. Thus the integrals over the space 'f),, can now be deformed to integrals
over the regular moduli space of Riemann surfaces. In practice, what this means is
that after integrating out the ¢, we can just identify Q ;y With a bona fide period
matrix. In this way we can reduce superstring scattering amplitudes to integrals of
modular forms over moduli space.

Implementation of this program requires a number of tools. Although we now
know how to express any correlation function in terms of € , we still need good for-
mulations for the determinants of the 8 operators themselves (c.f. (7.14)). These
can of course be written in terms of Q by bosonization, but the passage from Q
o Q isoften unwieldy. The superghosts 3, also demand special care, because
they are a commuting first order system. Even choices of branch points as insertion
points cause degeneracy problems which necd regularization. Nevertheless these
are more thecnical rather than conceptual problems, and we can be optimitistic that
with the correct rules of holomorphic splitting and tratment of odd variables, we
shall soon arrive at a full proof of consistency and finiteness of superstring pertur-
bation theory.
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