Supermoduli and Superstring Amplitudes

Eric D'Hoker

Mani L. Bhaumik Institute for Theoretical Physics, UCLA

27 March 2023
Supermoduli Workshop
Simons Center for Geometry and Phsyics

String Amplitudes

- Quantum Mechanics predicts probabilities

$$
\text { probability }=\mid \text { probability amplitude }\left.\right|^{2}
$$

- Probability amplitude is given by summing over random surfaces
- governed by topological expansion in the genus h weighed by $g_{s}^{2 h-2}$
$-g_{s}$ is the "string coupling"

- orientable worldsheet supports a metric \Longrightarrow Riemann surface
- For each genus the sum reduces to an integral over moduli
- bosonic strings: moduli space of compact Riemann surfaces
- superstrings: moduli space of compact super Riemann surfaces
(in the RNS formulation [Ramond 1971; Neveu, Schwarz 1971], [Gervais, Sakita 1971])

This talk

- Highlights in constructing superstring amplitudes via supermoduli
\star role played by the super period matrix
* derive the genus-two amplitudes with four and five gravitons
- Genus-two amplitudes with an arbitrary number N of gravitons
* Summations over even spin structures for arbitrary N
[ED, Hidding, Schlotterer 2022]
* Amplitude for 6 gravitons (even spin structure part only)
[ED, Hidding, Schlotterer], in progress
- Snowmass White Paper: String Perturbation Theory
[Berkovits, ED, Green, Johansson, Schlotterer, 2022]

Conformal structures

- Orientable 2-dim manifold with Riemannian metric is a Riemann surface
- complex manifold (holomorphic transition functions)
- complex $=$ conformal structure $J: T(\Sigma) \rightarrow T(\Sigma), J^{2}=-I$ is integrable
- its tangents space splits $T(\Sigma)=T_{(1,0)}(\Sigma) \oplus T_{(0,1)}(\Sigma)$
- Moduli space $\mathcal{M}_{h}=\{J\} / \operatorname{Diff}(\Sigma)$ of genus h Riemann surfaces
- Moduli space itself is a complex orbifold
- Its tangent space splits $T\left(\mathcal{M}_{h}\right)=T_{(1,0)}\left(\mathcal{M}_{h}\right) \oplus T_{(0,1)}\left(\mathcal{M}_{h}\right)$

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{M}_{h}=\left\{\begin{array}{cc}
0 & h=0 \\
1 & h=1 \\
3 h-3 & h \geq 2
\end{array}\right.
$$

Super conformal structures

- Complex supermanifold of $\operatorname{dim} 1 \mid 1$ (locally $\mathbb{C}^{1 \mid 1}$ with coordinates $z \mid \theta$)
- vector fields $V(z, \theta) \partial_{\theta}+W(z, \theta) \partial_{z}$
\Rightarrow produce $\mathcal{N}=2$ superconfomal transformations
- Super Riemann surfaces (SRS) is a dim $1 \mid 1$ super manifold
- vector fields restricted to leave $D_{\theta}=\partial_{\theta}+\theta \partial_{z}$ invariant up to scaling \Rightarrow produce $\mathcal{N}=1$ superconformal transformations
- Locally: SRS transition functions are $\mathcal{N}=1$ superconformal in $z \mid \theta$
- Moduli space of SRS: $\mathfrak{M}_{h}=\{\mathcal{J}\} / \operatorname{Diff}(\Sigma)$
$=$ equivalence classes of $\mathcal{N}=1$ superconformal structures \mathcal{J}

$$
\operatorname{dim}_{\mathbb{C}} \mathfrak{M}_{h}=\left\{\begin{array}{cl}
0 \mid 0 & h=0 \\
1 \mid 0 \text { or } 1 \mid 1 & h=1 \\
3 h-3 \mid 2 h-2 & h \geq 2
\end{array}\right. \text { even or odd spin structure }
$$

- odd modulus at $h=1$ odd spin structure is a book keeping device
- odd moduli appear non-trivially starting at genus 2

Worldsheet fields

- Minkowski $M=\mathbb{R}^{10}$ with Lorentz group $S O(1,9)$
- x^{μ} scalar on Σ maps worldsheet Σ into space-time M
- ψ^{μ} spinor on Σ but Lorentz vector under $S O(1,9)$
\star Two sectors: NS bosons (tensor reps of $S O(1,9)$)
R fermions (spinor reps of $S O(1,9)$)
- With Minkowski signature Σ
- $\psi^{\mu}(\tau-\sigma)$ and $\tilde{\psi}^{\mu}(\tau+\sigma)$ are independent Majorana-Weyl spinors
- With Euclidean signature Σ
- Left-movers $\tau+\sigma \rightarrow \tilde{z}$, right-movers $\tau-\sigma \rightarrow z$
$-\psi^{\mu}(z)$ and $\tilde{\psi}^{\mu}(\tilde{z})$ are independent complex Weyl spinors
- Globally, on a compact Riemann surface of genus h,夫 all ψ^{μ} are sections of a the same spin bundle S (and $\tilde{\psi}^{\mu}$ of \tilde{S})
$\star 2^{2 h}$ distinct spin structures for S (and $2^{2 h}$ independently for \tilde{S})
- GSO projection requires summations over spin structures, independently for δ and $\tilde{\delta}$ [Gliozzi, Scherk, Olive 1976]

Superstring worldsheets and moduli spaces

- Consider Type II superstrings
- Heterotic and open superstrings are analogous
- Independence of left and right chiralities
- Left: Super Riemann surface Σ_{L} with local coordinates $\left(\tilde{z}_{2}, \tilde{\theta}\right)$ super moduli space \mathfrak{M}_{L} with local coordinates $\left(\tilde{m}_{i}, \zeta_{\alpha}\right)$
- Right : Super Riemann surface Σ_{R} with local coordinates (z, θ) super moduli space \mathfrak{M}_{R} with local coordinates (m_{i}, ζ_{α})
- Pairing left and right chiralities [Witen 2011]
- fermionic variables remain independent: $(\theta, \tilde{\theta})$ and $(\zeta, \tilde{\zeta})$
- bosonic variables are related as follows,
\star Worldsheet: $\tilde{z}^{*}=z+$ nilpotent defines cycle $\Sigma \subset \Sigma_{L} \times \Sigma_{R}$

$$
\text { equivalently } \Sigma_{\text {red }}=\left(\Sigma_{L}\right)_{\mathrm{red}}=\left(\Sigma_{R}\right)_{\mathrm{red}}
$$

* Moduli: $\quad \tilde{m}_{i}^{*}=m_{i}+$ nilpotent defines cycle $\mathfrak{M} \subset \mathfrak{M}_{L} \times \mathfrak{M}_{R}$

$$
\text { equivalently } \mathfrak{M}_{\text {red }}=\left(\mathfrak{M}_{L}\right)_{\text {red }}=\left(\mathfrak{M}_{R}\right)_{\text {red }}
$$

- Stokes' theorem ensures independence of choice of cycles

Worldsheet action for Type II superstrings

- Worldsheet is $\Sigma \subset \Sigma_{L} \times \Sigma_{R}$
$-\Sigma_{L}$ has superconformal structure $\tilde{\mathcal{J}}$ with local coordinates $\tilde{z} \mid \tilde{\theta}$
$-\Sigma_{R}$ has superconformal structure \mathcal{J} with local coordinates $z \mid \theta$
- Superconformal invariant matter action [Brink, Di Vecchia, Howe; Deser, Zumino 1976]

$$
I_{m}\left[X^{\mu}, \tilde{\mathcal{J}}, \mathcal{J}\right]=\int_{\Sigma}[d \tilde{z} d z \mid d \tilde{\theta} d \theta] \tilde{D}_{\tilde{\theta}} X^{\mu} D_{\theta} X_{\mu}
$$

- worldsheet matter superfield in local coordinates $\left(D_{\theta}=\partial_{\theta}+\theta \partial_{z}\right)$

$$
X^{\mu}(\tilde{z}, z \mid \tilde{\theta}, \theta)=x^{\mu}(\tilde{z}, z)+\theta \psi^{\mu}(\tilde{z}, z)+\tilde{\theta} \tilde{\psi}^{\mu}(\tilde{z}, z)+\tilde{\theta} \theta F^{\mu}(\tilde{z}, z)
$$

- Superconformal algebra acting on the fields is generated by

$$
\begin{array}{ll}
S_{z \theta}=\frac{1}{2} \psi^{\mu} \partial_{z} x_{\mu} & T_{z z}=-\frac{1}{2} \partial_{z} x^{\mu} \partial_{z} x_{\mu}+\frac{1}{2} \psi^{\mu} \partial_{z} \psi_{\mu} \\
\tilde{S}_{\tilde{z} \tilde{\theta}}=\frac{1}{2} \tilde{\psi}^{\mu} \partial_{\tilde{z}} x_{\mu} & \tilde{T}_{\tilde{z} \tilde{z}}=-\frac{1}{2} \partial_{\tilde{z}} x^{\mu} \partial_{\tilde{z}} x_{\mu}+\frac{1}{2} \tilde{\psi}^{\mu} \partial_{\tilde{z}} \tilde{\psi}_{\mu}
\end{array}
$$

Parametrization of supermoduli

- Local parametrization of bosonic moduli (in conformal-invariant theory)
- Complex structure J with metric $g=|d z|^{2}$ in local coordinates (z, \tilde{z})
- deform complex structure by Beltrami differential to $g^{\prime}=|d z+\mu d \tilde{z}|^{2}$
- realized in CFT by insertion of $\int_{\Sigma} d \tilde{z} d z \mu_{\tilde{z}}{ }^{z} T_{z z}$
- Local parametrization of supermoduli (in superconformal-invariant theory)
- $\Sigma_{\text {red }}$ and $\mathfrak{M}_{\text {red }}$ are obtained by setting all odd Grassmann variables to zero
- Start with $\Sigma_{\text {red }}$ with complex structure given by $J \in \mathfrak{M}_{\text {red }}$
- Deformation of super conformal structure by inserting T and S

$$
\int_{\Sigma_{\mathrm{red}}} d \tilde{z} d z\left(\mu_{\tilde{z}}^{z} T_{z z}+\chi_{\tilde{z}}{ }^{\theta} S_{z \theta}\right)
$$

- local supersymmetry $\chi_{\bar{z}}{ }^{\theta} \rightarrow \chi_{\bar{z}}{ }^{\theta}+\partial_{\bar{z}} v^{\theta}$ and $\mu_{\bar{z}}{ }^{z} \rightarrow \mu_{\bar{z}}{ }^{z}+\partial_{\bar{z}}\left(v^{\theta} \chi_{\bar{z}}{ }^{\theta}\right)$
- χ and μ may be parametrized by local coordinates on \mathfrak{M}_{h}
- nilpotency of χ guarantees expansion terminates at finite order $2 h-2$

Higher genus Riemann surfaces

- Compact Riemann surface Σ of genus h
- Homology group $H_{1}(\Sigma, \mathbb{Z})$ with intersection pairing \mathfrak{J}
- Choose canonical homology basis $\mathfrak{A}_{I}, \mathfrak{B}_{I}$ for $H_{1}(\Sigma, \mathbb{Z}) \approx \mathbb{Z}^{2 h}$
with $\mathfrak{J}\left(\mathfrak{A}_{I}, \mathfrak{A}_{J}\right)=0, \mathfrak{J}\left(\mathfrak{B}_{I}, \mathfrak{B}_{J}\right)=0, \mathfrak{J}\left(\mathfrak{A}_{I}, \mathfrak{B}_{J}\right)=\delta_{I J}$ for $I, J=1, \cdots h$
- and normalize dual holomorphic $(1,0)$ forms ω_{I} by

$$
\oint_{A_{I}} \omega_{J}=\delta_{I J} \quad \oint_{B_{I}} \omega_{J}=\Omega_{I J}
$$

- Modular group $S p(2 h, \mathbb{Z})$ leaves \mathfrak{J} invariant

$$
\Omega \rightarrow(A \Omega+B)(C \Omega+D)^{-1} \quad\left(\begin{array}{c}
A \\
C
\end{array} \frac{B}{D}\right) \in S p(2 h, \mathbb{Z})
$$

- The period matrix belongs to the Siegel upper half space \mathcal{S}_{h}

$$
\mathcal{S}_{h}=\left\{\Omega \quad h \times h \text { complex matrices } \Omega^{t}=\Omega, \operatorname{Im} \Omega>0\right\}
$$

- moduli space $\mathcal{M}_{2}=\mathcal{S}_{2} / \operatorname{Sp}(4, \mathbb{Z})$ (minus diagonal)
- moduli space $\mathcal{M}_{3}=\mathcal{S}_{3} / \operatorname{Sp}(6, \mathbb{Z})$ (minus hyper-elliptic divisor)
- For $h \geq 4$ characterizing $\mathcal{M}_{h} \subset \mathcal{S}_{h} / S p(2 h, \mathbb{Z})$ is the Schottky problem

The super period matrix

- Compact super Riemann surface Σ of genus h [ED, Phong 1988]
- For even spin structure, there exist h superholomorphic forms $\hat{\omega}_{I}$ which produce a super period matrix $\hat{\Omega}$

$$
\oint_{\mathfrak{A}_{I}} \hat{\omega}_{J}=\delta_{I J} \quad \oint_{\mathfrak{B}_{I}} \hat{\omega}_{J}=\hat{\Omega}_{I J}
$$

- Explicit formulas in terms of the Szegö kernel S_{δ} give

$$
\hat{\Omega}_{I J}=\Omega_{I J}-\frac{i}{8 \pi} \iint \omega_{I}(z) \chi_{\tilde{z}}{ }^{\theta} S_{\delta}(z, w) \chi_{\tilde{w}}{ }^{\theta} \omega_{J}(w)+\cdots
$$

- $\hat{\Omega}_{I J}$ is locally supersymmetric with $\hat{\Omega}_{I J}=\hat{\Omega}_{J I}$ and $\operatorname{Im} \hat{\Omega}>0$
- For genus $h=2$
- no additional terms above in $+\cdots$
- Every $\hat{\Omega}$ corresponds to a Riemann surface (away from the diagonal)
- Szegö kernel $S_{\delta}(z, w \mid \Omega)$ is non-singular on \mathcal{M}_{2}
\Rightarrow The super period matrix provides a holomorphic projection $\mathfrak{N}_{2} \rightarrow \mathcal{M}_{2}$

Singularities in the projection of $\overline{\mathcal{M}}_{2} \rightarrow \overline{\mathcal{M}}_{2}$

- Projection $\mathfrak{M}_{2} \rightarrow \mathcal{M}_{2}$ is holomorphic but $\overline{\mathfrak{M}}_{2} \rightarrow \overline{\mathcal{M}}_{2}$ is not [witen 2013]
- There may be singularities on the boundary of \mathfrak{M}_{2}

$$
\Omega=\left(\begin{array}{cc}
\tau & u \\
u & \sigma
\end{array}\right) \quad \begin{array}{cc}
u \rightarrow 0 & \text { separating node } \\
\sigma \rightarrow i \infty & \text { non-separating node }
\end{array}
$$

- Key ingredient in $\hat{\Omega}$ is the Szegö kernel

$$
S_{\delta}(z, w \mid \Omega)=\frac{\vartheta[\delta](z-w \mid \Omega)}{\vartheta[\delta](0 \mid \Omega) E(z, w)}
$$

- As $u \rightarrow 0$ we have $\vartheta[\delta](0 \mid \Omega) \rightarrow \vartheta\left[\delta_{1}\right](0 \mid \tau) \vartheta\left[\delta_{2}\right](0 \mid \tau)$
- Even $\delta=\left[\delta_{1}, \delta_{2}\right]$ with δ_{1}, δ_{2} odd produces a singularity in S_{δ} and $\hat{\Omega}$
- Physical effects
- in flat space-time \mathbb{R}^{10} singularity absent thanks to ψ-zero modes
- contribution when susy is broken by radiative corrections [Witten 2013]
- two-loop vacuum energy in Heterotic strings on CY orbifold $\mathbb{C}^{3} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
\star zero for $E_{8} \times E_{8} \rightarrow E_{6} \times E_{8}$ with unbroken susy
\star non-zero for $\operatorname{Spin}(32) / \mathbb{Z}_{2} \rightarrow S O(26) \times U(3)$ with broken susy
[ED, Phong 2013; Berkovits, Witten 2014]

Singularities in the projection $\mathfrak{N}_{3} \rightarrow \mathcal{M}_{3}$

- Some basic structure
- A hyper-elliptic surface is a branched double cover of the sphere $\hat{\mathbb{C}}=S^{2}$
- All genus 1 and all genus 2 surfaces are hyper-elliptic
- \mathcal{M}_{3} contains the divisor of hyper-elliptic surfaces
- The period matrix for genus 3 (even spin structure)

$$
\hat{\Omega}_{I J}=\Omega_{I J}-\frac{i}{8 \pi} \iint \omega_{I}(z) \chi_{\tilde{z}}{ }^{\theta} S_{\delta}(z, w) \chi_{\tilde{w}}{ }^{\theta} \omega_{J}(w)+\mathcal{O}\left(\chi^{4}\right)
$$

- The hyper-elliptic divisor crosses the interior of \mathfrak{M}_{3} along subvarieties characterized by $\vartheta[\delta](0 \mid \Omega)=0$ for some even spin structure δ where the Szegö kernel S_{δ} diverges
- The projection $\mathfrak{M}_{3} \rightarrow \mathcal{M}_{3}$ is not globally holomorphic [Witten 2015]
- Predicted by global results on projectedness [Donagi, Witten 2014]

Super period matrix for Ramond punctures

- Moduli space with n punctures $\operatorname{dim} \mathcal{M}_{h ; n}=3 h-3+n>0$
- Punctures on super Riemann surfaces
- NS puncture at $z=0$ satisfies $\psi\left(e^{2 \pi i} z\right)=+\psi(z)$
- R puncture at $z=0$ satisfies $\psi\left(e^{2 \pi i} z\right)=-\psi(z)$
- dimension dim $\mathfrak{M}_{h ; n, 2 r}=(3 h-3+n+2 r \mid 2 h-2+n+r)$
- R-punctures occur in pairs $\left(p_{\eta}, q_{\eta}\right)$ with R-divisor $\mathcal{F}=\sum_{\eta=1}^{r}\left(p_{\eta}+q_{\eta}\right)$
- R-fields are sections of \mathcal{R}^{-1} where $\mathcal{R}^{2}=K^{-1} \otimes \mathcal{O}(-\mathcal{F})$
$-H^{0}\left(\Sigma, \mathcal{R}^{-1}\right)=r$ giving r holomorphic $\left(\frac{1}{2}, 0\right)$ forms ρ_{η}
- Period for Ramond punctures
[Witten 2015; ED, Phong 2015]
- $\hat{\omega}_{I}$ and $\hat{\rho}_{\eta}$ resp. odd and even superholomorphic forms
- R-periods $\hat{\Omega}_{I \eta}$ extracted from $\hat{\omega}_{I} ; \hat{\Omega}_{\zeta \eta}$ extracted from $\hat{\rho}_{\eta}$ on \mathcal{F}

$$
\hat{\Omega}=\left(\begin{array}{c}
\hat{\Omega}_{I J} \\
\hat{\Omega}_{I \eta} \\
\hat{\Omega}_{\zeta I} \\
\hat{\Omega}_{\zeta \eta}
\end{array}\right)=\left(\begin{array}{cc}
\hat{\Omega}_{J I} & \hat{\Omega}_{\eta I} \\
\hat{\Omega}_{I \zeta} & -\hat{\Omega}_{\eta \zeta}
\end{array}\right)
$$

- $\hat{\Omega}$ with R-punctures may also be derived from non-separating degeneration of $\hat{\Omega}$ at higher genus without R-punctures

Evaluating genus 2 superstring amplitudes

- Specialize to genus $h=2$ and even spin structures
- Natural parametrization of \mathfrak{M}_{2} using holomorphic projection

$$
\begin{aligned}
m^{A} & =\left(\hat{\Omega}_{I J}, \zeta^{1}, \zeta^{2}\right) \\
\chi_{\tilde{z}}{ }^{\theta} & =\zeta^{1} \delta\left(z, q_{1}\right)+\zeta^{2} \delta\left(z, q_{2}\right)
\end{aligned}
$$

- Deformations of complex structure by Beltrami diff. $\hat{\mu}=\mathcal{O}\left(\zeta^{1} \zeta^{2}\right)$

$$
\Omega_{I J} \rightarrow \hat{\Omega}_{I J} \quad\left\{\begin{array}{ccc}
g & \rightarrow & \hat{g}=g+\hat{\mu} \\
\partial_{\bar{z}} & \rightarrow & \hat{\partial}_{\bar{z}}=\partial_{\bar{z}}+\hat{\mu} \partial_{z} \\
\langle\cdots\rangle(g) & \rightarrow & \langle\cdots\rangle(\hat{g})+\int \hat{\mu}\langle T \cdots\rangle(\hat{g})
\end{array}\right.
$$

- supersymmetry guarantees independence of choice of points q_{1}, q_{2}
- in particular, absence of earlier ambiguities pointed out by [Atick, Rabin, Sen 1989]

Chiral splitting and loop momenta

- Loop momenta [Verlinde, Verlinde 1988; ED, Phong 1988]
\star Momentum flowing through a curve is the line integral of the $\partial_{z} x^{\mu}$
* A canonical homology basis gives a natural choice of loop momenta

$$
p_{\mu}^{I}=\frac{1}{2 \pi} \oint_{\mathfrak{A}_{I}} \partial_{z} x_{\mu}
$$

- Chiral splitting into chiral blocks [ED, Phong 1989]
* Amplitude is given by pairing left and right chiral blocks

$$
\mathcal{A}_{N}^{(2)}=\int_{\mathbb{R}^{20}} d p \int_{\mathfrak{M}_{2}} \int_{\Sigma^{N}} \mathcal{F}[\delta](\varepsilon, k, p \mid z, \theta, \hat{\Omega}, \zeta) \tilde{\mathcal{F}}[\tilde{\delta}](\tilde{\varepsilon}, k, p \mid \tilde{z}, \tilde{\theta}, \hat{\Omega}, \tilde{\zeta})
$$

- $\mathcal{F}[\delta]$ is locally holomorphic on Σ_{R} and \mathfrak{M}_{R}
\star Bosonic moduli paired with the same super period matrix $\hat{\Omega}$
* Integral over \mathfrak{M}_{2} includes summation over spin structures $\delta, \tilde{\delta}$

Properties of chiral blocks

- Universal monodromy $=$ "homology shift invariance " [ED, Phong 1988-89]
* Moving a vertex point z_{j} around an \mathfrak{A}_{J} or \mathfrak{B}_{J} cycle

$$
\begin{aligned}
\mathcal{F}[\delta]\left(\varepsilon, k, p \mid z_{i}+\delta_{i j} \mathfrak{A}_{J}, \theta_{i}, \hat{\Omega}, \zeta\right) & =e^{2 \pi i k_{j} \cdot p^{J}} \mathcal{F}[\delta]\left(\varepsilon, k_{i}, p \mid z_{i}, \theta_{i}, \hat{\Omega}, \zeta\right) \\
\mathcal{F}[\delta]\left(\varepsilon, k, p^{I} \mid z_{i}+\delta_{i j} \mathfrak{B}_{J}, \theta_{i}, \hat{\Omega}, \zeta\right) & =\mathcal{F}[\delta]\left(\varepsilon, k, p^{I}+\delta_{J}^{I} k_{j} \mid z_{i}, \theta_{i}, \hat{\Omega}, \zeta\right)
\end{aligned}
$$

* Physical amplitude $\mathcal{A}_{N}^{(2)}$ is invariant by translation invariance of $\int d p$
\star Monodromy is universal, valid for bosonic, Type II, Heterotic strings

The chiral measure in terms of ϑ-constants

- Chiral measure on \mathfrak{M}_{2} for superstrings in $M=\mathbf{R}^{10}$ [ED, Phong 2001]

$$
d \mu[\delta](\hat{\Omega}, \zeta)=\left[\mathcal{Z}[\delta](\hat{\Omega})+\zeta^{1} \zeta^{2} \frac{\Xi_{6}[\delta](\hat{\Omega}) \vartheta[\delta]^{4}(0, \hat{\Omega})}{16 \pi^{6} \Psi_{10}(\hat{\Omega})}\right] d^{2} \zeta d^{3} \hat{\Omega}
$$

- Spin structures represented by half-integer characteristic $\delta \in\{0,1 / 2\}^{4}$
- $\Psi_{10}(\hat{\Omega})=$ Igusa's unique cusp modular form of weight 10
- The factor $\mathcal{Z}[\delta]$ may be evaluated as well, but will not be given here.
- The modular form $\Xi_{6}[\delta](\hat{\Omega})$ may be defined, for genus 2 ,
- Each even spin structure δ uniquely maps to a partition of the six odd spin structures ν_{i}. Let $\delta \equiv \nu_{1}+\nu_{2}+\nu_{3} \equiv \nu_{4}+\nu_{5}+\nu_{6}$

$$
\Xi_{6}[\delta](\hat{\Omega})=\sum_{1 \leq i<j \leq 3}\left\langle\nu_{i} \mid \nu_{j}\right\rangle \prod_{k=4,5,6} \vartheta\left[\nu_{i}+\nu_{j}+\nu_{k}\right](0, \hat{\Omega})^{4}
$$

- Symplectic pairing signature: $\left\langle\nu_{i} \mid \nu_{j}\right\rangle \equiv \exp 4 \pi i\left(\nu_{i}^{\prime} \nu_{j}^{\prime \prime}-\nu_{i}^{\prime \prime} \nu_{j}^{\prime}\right) \in\{ \pm 1\}$
- $\Xi_{6}[\delta](\hat{\Omega})$ admits a natural generalization to genus $\mathbf{3}$ and 4
[Cacciatori, Della Piazza, Van Geemen 2008; Matone, Volpato 2008; Grushevsky, Salvatti-Mann 2008; Morozov 2008]

Chiral Amplitudes

- Chiral Amplitudes on \mathfrak{M}_{2}
- involve correlation functions $\mathcal{F}_{0}, \mathcal{F}_{2}$ which depend on $\hat{\Omega}$ and on ζ

$$
\mathcal{F}[\delta](\hat{\Omega}, \zeta)=d \mu[\delta](\hat{\Omega}, \zeta)\left(\mathcal{F}_{0}[\delta](\hat{\Omega})+\zeta^{1} \zeta^{2} \mathcal{F}_{2}[\delta](\hat{\Omega})\right)
$$

- Projection to chiral amplitudes on \mathcal{M}_{2}
by integrating over odd moduli ζ at fixed δ and fixed $\hat{\Omega}$

$$
\mathcal{L}[\delta](\hat{\Omega})=\int_{\zeta} \mathcal{F}[\delta](\hat{\Omega}, \zeta)=\left(\mathcal{Z}[\delta] \mathcal{F}_{2}[\delta]+\frac{\Xi_{6}[\delta] \vartheta[\delta]^{4}}{16 \pi^{6} \Psi_{10}} \mathcal{F}_{0}[\delta]\right) d^{3} \hat{\Omega}
$$

- Gliozzi-Scherk-Olive projection
- realized by summation over spin structures with constant phases;
- separately in left and right chiral amplitudes for Type II and Heterotic;
- phases to be determined from requirement of modular covariance.

Four-graviton amplitude in Type II

- Projected to \mathcal{M}_{2} and summed over spin structures [ED, Phong 2005]

$$
\mathcal{A}_{4}^{(2)}=g_{s}^{2} \mathcal{R}^{4} \int_{\mathcal{M}_{2}} \frac{\left|d \Omega^{3}\right|^{2}}{(\operatorname{det} \operatorname{Im} \Omega)^{3}} \int_{\Sigma^{4}} \frac{\mathcal{Y} \wedge \overline{\mathcal{Y}}}{(\operatorname{det} \operatorname{Im} \Omega)^{2}} \exp \left\{\sum_{i<j} s_{i j} G\left(z_{i}, z_{j} \mid \Omega\right)\right\}
$$

\star string momenta k_{i} with $s_{i j}=-\alpha^{\prime} k_{i} \cdot k_{j} / 2$
$\star \mathcal{R}^{4}=t_{8} \tilde{t}_{8}$ scalar contraction of four linearized Riemann tensors \mathcal{R}

* Measure on Σ^{4} interlaces kinematic and worldsheet data

$$
\begin{aligned}
\mathcal{Y} & =s_{14} \Delta\left(z_{1}, z_{2}\right) \Delta\left(z_{3}, z_{4}\right)-s_{12} \Delta\left(z_{1}, z_{4}\right) \Delta\left(z_{2}, z_{3}\right) \\
\Delta(z, w) & =\omega_{1}(z) \omega_{2}(w)-\omega_{2}(z) \omega_{1}(w)
\end{aligned}
$$

* Standard string Green function in terms of the prime form $E(z, w \mid \Omega)$

$$
G(z, w \mid \Omega)=-\ln |E(z, w \mid \Omega)|^{2}+2 \pi(\operatorname{Im} \Omega)_{I J}^{-1} \operatorname{Im} \int_{w}^{z} \omega_{I} \operatorname{Im} \int_{w}^{z} \omega_{J}
$$

- α^{\prime} expansion matches S-duality predictions in Type IIB for BPS operators
\star coefficient of $D^{4} \mathcal{R}^{4}$ [ED, Gutperle, Phong 2005; Gomez, Mafra 2010]
\star coefficient of $D^{6} \mathcal{R}^{4}$ [ED, Green, Pioline, Russo 2014]

Five-graviton amplitude in Type II

- Massless NS states; even spin structures [ED, Schloteterer 2021] (152 pages !)

$$
\mathcal{F}_{5}=\mathcal{I}_{5} \sum_{i}\left\{\mathfrak{P}^{I}\left(z_{i}\right) \cdot\left(\varepsilon_{i} \mathfrak{t}_{i} \mathcal{Y}_{I}+k_{i} \mathfrak{T}_{i I}\right)-\sum_{j \neq i} \mathcal{Y}_{I} \mathfrak{t}_{i j} g_{i, j}^{I}\right\}
$$

- Universal chiral Koba-Nielsen factor, common to all string theories

$$
\mathcal{I}_{5}=\exp \left\{i \pi \Omega_{I J} p^{I} \cdot p^{J}+2 \pi i \sum_{j} k_{j} \cdot p^{I} \int_{z_{0}}^{z_{j}} \omega_{I}-\sum_{i \neq j} s_{i j} \ln E\left(z_{i}, z_{j} \mid \Omega\right)\right\}
$$

- Kinematic combinations of $f_{i}^{\mu \nu}=k_{i}^{\mu} \varepsilon_{i}^{\nu}-k_{i}^{\nu} \varepsilon_{i}^{\nu}$

$$
\mathfrak{t}_{1}=t_{8}\left(f_{2}, f_{3}, f_{4}, f_{5}\right) \quad \mathfrak{t}_{12}=t_{8}\left(\left[f_{1}, f_{2}\right], f_{3}, f_{4}, f_{5}\right)
$$

- Remaining ingredients

$$
\begin{aligned}
\mathfrak{P}^{I} & =2 \pi i p^{I}+\sum_{j, i} g_{i, j}^{I} k_{j} \quad g_{i, j}^{I}=\partial^{I} \ln \vartheta\left[[]\left(z_{j}-z_{i} \mid \Omega\right)\right. \\
y_{I} & =4 s_{12} \omega_{I}(4) \Delta(5,1) \Delta(2,3)+\operatorname{cyc}(1,2,3,4,5) \\
\mathfrak{T}_{1 I} & =\left(t_{12}-21_{1} \varepsilon_{1} \cdot k_{2}\right)\left\{\omega_{I}(3) \Delta(1,5) \Delta(2,4)+\operatorname{cyc}(3,4,5)\right\}+\operatorname{cyc}(2,3,4,5)
\end{aligned}
$$

- Remarkably simple !
* Also obtained by amalgam of chiral splitting and pure spinor strings

Spin structure sums for higher multiplicity

- Major effort goes into evaluating sums over spin structures
* required for GSO projection onto supersymmetric amplitudes
\star required to project to $E_{8} \times E_{8}$ or $\operatorname{Spin}\left(32 / \mathbb{Z}_{2}\right)$ in Heterotic strings
- Even spin structures and NS external states
* Correlator of chiral fermions for spin structure δ given by Szegö kernel

$$
\langle\psi(z) \psi(w)\rangle=S_{\delta}(z, w)=\frac{\vartheta[\delta]\left(\int_{w}^{z} \omega \mid \Omega\right)}{\vartheta[\delta](0 \mid \Omega) E(z, w)}
$$

* String amplitude integrands involve cyclic products of Szegö kernels

$$
C_{\delta}\left(z_{1}, \cdots, z_{n}\right)=S_{\delta}\left(z_{1}, z_{2}\right) S_{\delta}\left(z_{2}, z_{3}\right) \cdots S_{\delta}\left(z_{n-1}, z_{n}\right) S_{\delta}\left(z_{n}, z_{1}\right)
$$

(they also involve other products that may be treated similarly)
\star Evaluating the spin structure sums for $n=4,5$ point amplitudes involved

- Riemann identities; Fay trisecant identity (cfr bosonization)
- and every other trick we could think of
\Rightarrow those methods show no promising generalization to $n \geq 6$
- the problem was also considered in [Tsuchiya 2012; 2017; 2022]

Reduction of higher multiplicity spin structure sums

- Theorem [ED, Hidding, Schlotterer 2022]

The spin structure sum of $C_{\delta}\left(z_{1}, \cdots, z_{n}\right)$ for arbitrary n reduces to the spin structure sums for the cases $n=0,2,3,4$

* The proof is constructive in the hyper-elliptic formulation
\star The result will be translated into the ϑ-function formulation
- Every genus two surface Σ is hyper-elliptic
* namely a double cover of the Riemann sphere $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$
* ramified over 6 branch points u_{1}, \cdots, u_{6}
\star points $z \in \Sigma$ parametrized by $z=(x, s)$ where $s^{2}=\left(x-u_{1}\right) \cdots\left(x-u_{6}\right)$
\star Moduli space \mathcal{M}_{2} isomorphic to $\left\{u_{1}, \cdots, u_{6}\right\} /\left(S L(2, \mathbb{C}) \times \mathfrak{S}_{6}\right)$

Sketch of proof of the Theorem

\star An even spin structure δ is isomorphic to a $3+3$ partition of branch points

$$
\left\{u_{1}, \cdots, u_{6}\right\}=A \cup B \quad A \cap B=\emptyset \quad|A|=|B|=3
$$

* The Szegö kernel is given in terms of this partition by

$$
S_{\delta}\left(z_{1}, z_{2}\right)=\frac{s_{A}\left(x_{1}\right) s_{B}\left(x_{2}\right)+s_{B}\left(x_{1}\right) s_{A}\left(x_{2}\right)}{2\left(x_{1}-x_{2}\right)}\left[\frac{d x_{1} d x_{2}}{s\left(x_{1}\right) s\left(x_{2}\right)}\right]^{\frac{1}{2}}
$$

where $s_{A}(x) s_{B}(x)=s(x)$ and $s_{A}(x)^{2}$ and $s_{B}(x)^{2}$ are polynomials given by

$$
s_{A}(x)^{2}=\prod_{r \in A}\left(x-u_{r}\right) \quad s_{B}(x)^{2}=\prod_{r \in B}\left(x-u_{r}\right)
$$

* The cyclic product of Szegö kernels is thus given by (using $x_{n+1}=x_{1}$)

$$
C_{\delta}\left(z_{1}, \cdots z_{n}\right)=\frac{\prod_{i=1}^{n}\left(s_{A}\left(x_{i}\right) s_{B}\left(x_{i+1}\right)+s_{B}\left(x_{i}\right) s_{A}\left(x_{i+1}\right)\right.}{2^{n} x_{12} x_{23} \cdots x_{n 1}} \frac{d x_{1} \cdots d x_{n}}{s\left(x_{1}\right) \cdots s\left(x_{n}\right)}
$$

- Lemma 1

All spin structure dependence is contained in polynomials with $2 m \leq n$

$$
Q_{\delta}\left(i_{1}, \cdots, i_{m} \mid j_{1}, \cdots, j_{m}\right)=\prod_{\alpha=1}^{m} s_{A}\left(x_{i_{\alpha}}\right)^{2} s_{B}\left(x_{j_{\alpha}}\right)^{2}+(A \leftrightarrow B)
$$

Sketch of proof of the Theorem (cont'd)

- Lemma 2

All spin structure dependence of Q_{δ} is polynomial in $\ell_{\delta}^{11}, \ell_{\delta}^{12}=\ell_{\delta}^{21}, \ell_{\delta}^{22}$

$$
\begin{aligned}
& \boldsymbol{\ell}_{\delta}^{11}=\frac{1}{4} \alpha_{2} \beta_{2}-\frac{3}{20} \mu_{4} \\
& \boldsymbol{\ell}_{\delta}^{12}=\frac{1}{4}\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right)-\frac{9}{40} \mu_{3} \\
& \boldsymbol{\ell}_{\delta}^{22}=\frac{1}{4} \alpha_{1} \beta_{1}-\frac{3}{20} \mu_{2}
\end{aligned}
$$

$$
s_{A}(x)^{2}=x^{3}-\alpha_{1} x^{2}+\alpha_{2} x-\alpha_{3}
$$

$$
s_{B}(x)^{2}=x^{3}-\beta_{1} x^{2}+\beta_{2} x-\beta_{3}
$$

$$
s(x)^{2}=x^{6}-\mu_{1} x^{5}+\cdots-\mu_{5} x+\mu_{6}
$$

- Lemma 3: The trilinear relations

Every trilinear $\ell_{\delta}^{a_{1} a_{2}} \ell_{\delta}^{a_{3} a_{4}} \ell_{\delta}^{a_{5} a_{6}}$ may be expressed as a polynomial of total degree two in the combinations $\ell_{\delta}^{11}, \ell_{\delta}^{12}$ and ℓ_{δ}^{22} whose coefficients are polynomials in μ_{1}, \cdots, μ_{6}

- Combining Lemmas 1, 2 and 3 implies that all spin structure dependence of C_{δ} is given by a quadratic polynomial in $\ell_{\delta}^{11}, \ell_{\delta}^{12}, \ell_{\delta}^{22}$ with coefficients that depend only on μ_{i}.
- The spin structure sums of the linears $\ell_{\delta}^{a_{1} a_{2}}$ and of the bilinears $\ell_{\delta}^{a_{1} a_{2}} \ell_{\delta}^{a_{3} a_{4}}$ are determined by N-point functions with $N \leq 4$, which concludes the proof of the Theorem.

$S L(2, \mathbb{C})$ tensorial structure of the trilinear relations

- Component form of the trilinear relations e.g.

$$
\begin{aligned}
\left(\ell_{\delta}^{11}\right)^{3}= & \frac{\mu_{4}\left(\ell_{\delta}^{11}\right)^{2}}{20}-\frac{\mu_{5} \ell_{\delta}^{11} \ell_{\delta}^{12}}{4}+\mu_{6} \ell_{\delta}^{11} \ell_{\delta}^{22}-\frac{\mu_{6}\left(\ell_{\delta}^{12}\right)^{2}}{4}+\frac{\mu_{4}^{2} \ell_{\delta}^{11}}{50}-\frac{9 \mu_{3} \mu_{5} \ell_{\delta}^{11}}{160}+\frac{3 \mu_{2} \mu_{6} \ell_{\delta}^{11}}{20}+\frac{\mu_{4} \mu_{5} \ell_{\delta}^{12}}{40} \\
& -\frac{9 \mu_{3} \mu_{6} \ell_{\delta}^{12}}{80}-\frac{\mu_{5}^{2} \ell_{\delta}^{22}}{16}+\frac{3 \mu_{4} \mu_{6} \ell_{\delta}^{22}}{20}-\frac{3 \mu_{4}^{3}}{2000}+\frac{9 \mu_{3} \mu_{4} \mu_{5}}{1600}-\frac{3 \mu_{2} \mu_{5}^{2}}{320}-\frac{81 \mu_{3}^{2} \mu_{6}}{6400}+\frac{9 \mu_{2} \mu_{4} \mu_{6}}{400}
\end{aligned}
$$

- The $\ell_{\delta}^{a b}$ transform under the 3-dimensional irrep of $S L(2, \mathbb{C})$ by

$$
\ell_{\delta}^{a b} \rightarrow J g_{c}^{a} g_{d}^{b} \ell_{\delta}^{c d} \quad g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in S L(2, \mathbb{C}) \quad J=\prod_{j=1}^{6}\left(\gamma u_{j}+\delta\right)^{-1}
$$

- The trilinear relations in $S L(2, \mathbb{C})$ tensorial form

$$
\begin{align*}
& \boldsymbol{\ell}_{\delta}^{\left(a_{1} a_{2}\right.} \boldsymbol{\ell}_{\delta}^{a_{3} a_{4}} \boldsymbol{\ell}_{\delta}^{\left.a_{5} a_{6}\right)}=\mathbf{M}_{1}^{b_{1} b_{2}\left(a_{1} \cdots a_{4}\right.} \boldsymbol{\ell}_{\delta}^{\left.a_{5} a_{6}\right)} \boldsymbol{\ell}_{\delta}^{c_{1} c_{2}} \varepsilon_{b_{1} c_{1}} \varepsilon_{b_{2} c_{2}}+\cdots \tag{7}\\
& \quad\left(\operatorname{det} \boldsymbol{\ell}_{\delta}\right) \boldsymbol{\ell}_{\delta}^{a_{1} a_{2}}=\frac{3}{2} \mathbf{M}_{1}^{a_{1} a_{2} b_{1} \cdots b_{4}} \boldsymbol{\ell}_{\delta}^{c_{1} c_{2}} \boldsymbol{\ell}_{\delta}^{c_{3} c_{4}} \varepsilon_{b_{1} c_{1}} \cdots \varepsilon_{b_{4} c_{4}}+\cdots
\end{align*}
$$

\star where \mathbf{M}_{1} is the symmetric rank 6 tensor under $S L(2, \mathbb{C})$ with components

$$
\mathbf{M}_{1}^{111111}=\mu_{6} \quad \mathbf{M}_{1}^{111112}=\frac{\mu_{5}}{6} \quad \mathbf{M}_{1}^{111122}=\frac{\mu_{4}}{15} \cdots
$$

$S p(4, \mathbb{Z})$ tensorial structure of the trilinear relations

- Correspondence between hyper-elliptic and ϑ-function formulations
* via standard Thomae formulas and holomorphic 1-forms ω_{I}

$$
\varpi_{1}=\frac{d x}{s(x)} \quad \varpi_{2}=-\frac{x d x}{s(x)} \quad \omega_{I}(z)=\varpi_{a}(z) \sigma^{a}{ }_{I}
$$

\star we obtain the modular tensors \mathfrak{L}_{δ} and \mathfrak{M}_{1} (δ transforms)

$$
\begin{aligned}
\boldsymbol{\ell}_{\delta}^{a b} & \rightarrow \mathfrak{L}_{\delta}^{I J}=\frac{\pi}{5 i} \partial^{I J} \ln \left\{\frac{\vartheta[\delta](0)^{20}}{\Psi_{10}}\right\} \\
\mathbf{M}_{1}^{a_{1} \cdots a_{6}} & \rightarrow \mathfrak{M}_{1}^{I_{1} \cdots I_{6}}=\Psi_{10}^{-\frac{1}{2}} \partial^{\left(I_{1}\right.} \vartheta\left[\nu_{1}\right](0) \cdots \partial^{\left.I_{6}\right)} \vartheta\left[\nu_{6}\right](0)
\end{aligned}
$$

\star where ν_{1}, \cdots, ν_{6} are the six (distinct) odd spin structures

- Trilinear relations are between $S p(4, \mathbb{Z})$ modular tensors

$$
\begin{aligned}
\mathfrak{L}_{\delta}^{\left(I_{1} I_{2}\right.} \mathfrak{L}_{\delta}^{I_{3} I_{4}} \mathfrak{L}_{\delta}^{\left.I_{5} I_{6}\right)} & =\mathfrak{M}_{1}^{J_{1} J_{2}\left(I_{1} \cdots I_{4}\right.} \mathfrak{L}_{\delta}^{\left.I_{5} I_{6}\right)} \mathfrak{L}_{\delta}^{K_{1} K_{2}} \varepsilon_{J_{1} K_{1}} \varepsilon_{J_{2} K_{2}}+\cdots \\
\left(\operatorname{det} \mathfrak{L}_{\delta}\right) \mathfrak{L}_{\delta}^{I_{1} I_{2}} & =\frac{3}{2} \mathfrak{M}_{1}^{I_{1} I_{2} J_{1} \cdots J_{4}} \mathfrak{L}_{\delta}^{K_{1} K_{2}} \mathfrak{L}_{\delta}^{K_{3} K_{4}} \varepsilon_{J_{1} K_{1}} \cdots \varepsilon_{J_{4} K_{4}}+\cdots
\end{aligned}
$$

Modular tensors

- Structure of (locally holomorphic) modular tensors under $S p(4, \mathbb{Z})$
* totally symmetric tensor \mathfrak{T} of rank r and weight w * transforms under $\left(\begin{array}{c}A \\ C\end{array}\right.$

$$
\mathfrak{T}^{I_{1} \cdots I_{r}} \rightarrow \operatorname{det}(C \Omega+D)^{w}(C \Omega+D)^{I_{1}} \cdots(C \Omega+D)^{I_{1}} \cdots{ }_{J_{r}} \mathfrak{T}^{J_{1} \cdots J_{r}}
$$

- Classic Siegel modular forms of weight w correspond to rank $r=0$
$\star \operatorname{Sp}(4, \mathbb{Z})$: polynomial ring generated by $\Psi_{4}, \Psi_{6}, \Psi_{10}, \Psi_{12}, \Psi_{35}$ [Igus]
- Non-holomorphic modular tensors arise in the α^{\prime} expansion
\star related to the Kawazumi-Zhang invariant [Kawzzumi 2008;Zhang 2008; Kawzzumi 2016]
* higher genus modular graph functions [ED, Green, Pioline, Schloteterer 2020; ED, Schloteterer 2021]

Summary and outlook

- Four- and Five-point 2-loop amplitudes
* direct calculation for even spin structure using supermoduli
* remarkable simplicity of the final amplitude
- Higher point 2-loop amplitudes
* all even spin structures sums available via modular tensors
- Ring structure for modular tensors of arbitrary rank and weight
\star what are the generators?
\star which subspace is needed for string amplitudes ?
- What is the structure of string amplitudes ?
* the expansion in α^{\prime} showed extensive structure - modular graph functions and relation to polylogarithms cfr Schlotterer's talk
* finite α^{\prime} involves modular tensors and intertwined kinematic dependence
- can one build an efficient library for these structures?

