Supermoduli and Superstring Amplitudes

Eric D’Hoker
Mani L. Bhaumik Institute for Theoretical Physics, UCLA

27 March 2023
Supermoduli Workshop
Simons Center for Geometry and Phsyics

S
r : ‘,A



String Amplitudes
e Quantum Mechanics predicts probabilities
probability = | probability amplitude |?

e Probability amplitude is given by summing over random surfaces
— governed by topological expansion in the genus h weighed by g2
— g5 Is the “string coupling”
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— orientable worldsheet supports a metric = Riemann surface

e For each genus the sum reduces to an integral over moduli
— bosonic strings: moduli space of compact Riemann surfaces
— superstrings: moduli space of compact super Riemann surfaces
(in the RNS formulation )



This talk

e Highlights in constructing superstring amplitudes via supermoduli
* role played by the super period matrix
* derive the genus-two amplitudes with four and five gravitons

e Genus-two amplitudes with an arbitrary number N of gravitons
* Summations over even spin structures for arbitrary N

x Amplitude for 6 gravitons (even spin structure part only)

e Snowmass White Paper: String Perturbation Theory
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Conformal structures

¢ Orientable 2-dim manifold with Riemannian metric is a Riemann surface
— complex manifold (holomorphic transition functions)
— complex = conformal structure J : T'(X) — T'(X), J? = —1I is integrable
— its tangents space splits T'(X) = T(1,0y(2) @ T{0,1)(2)
— Moduli space M, = {J}/Diff (%) of genus h Riemann surfaces

e Moduli space itself is a complex orbifold
— lts tangent space splits T'(M},) = T(1 0y (Mn) © T(o,1)(Mn)

0 h =0
dim@./\/lh: 1 h=1
Jh—3 h=>2



Eric D'Hoker Supermoduli and superstring Amplitudes

Super conformal structures

e Complex supermanifold of dim 1|1 (locally C''" with coordinates z|0)
— vector fields V (z,0)09 + W (z,0)0,
= produce N = 2 superconfomal transformations

e Super Riemann surfaces (SRS) is a dim 1|1 super manifold
— vector fields restricted to leave Dy = 0y + 00, invariant up to scaling
= produce N = 1 superconformal transformations
— Locally: SRS transition functions are N = 1 superconformal in z|0

e Moduli space of SRS: 0, = {J}/Diff(%)
— equivalence classes of N/ = 1 superconformal structures 7
0[0 h=0

dime My, = 1|0 or 1|1 h =1 even or odd spin structure
3h —3]2h —2 h > 2

— odd modulus at h = 1 odd spin structure is a book keeping device
— odd moduli appear non-trivially starting at genus 2
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Worldsheet fields

e Minkowski 1/ = R!'” with Lorentz group SO(1,9)
— x# scalar on X maps worldsheet X2 into space-time M
— * spinor on Y but Lorentz vector under SO(1,9)
x Two sectors : NS bosons (tensor reps of SO(1,9))
R fermions (spinor reps of SO(1,9))

e With Minkowski signature >
— (1 — o) and Y (T + o) are independent Majorana-Weyl spinors

e With Euclidean signature >
— Left-movers 7 + o — Z, right-movers 7 — 0 — 2
— YH(2) and Y*(2) are independent complex Weyl spinors
— Globally, on a compact Riemann surface of genus h,
* all Y* are sections of a the same spin bundle S (and ¥* of S)
* 22 distinct spin structures for S (and 22" independently for S)
— GSO projection requires summations over spin structures,

independently for § and & [Glozi, scherk, Olive 1976)
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Superstring worldsheets and moduli spaces

e Consider Type |l superstrings
- Heterotic and open superstrings are analogous

e Independence of left and right chiralities
— Left :  Super Riemann surface X1, with local coordinates (Z, 6)
super moduli space Mt with local coordinates (7, Co)
— Right : Super Riemann surface X with local coordinates (z, )
super moduli space M with local coordinates (m;, ()

e Pairing left and right chiralities |witcn 2011]
— fermionic variables remain independent: (6, 6) and (¢, )
— bosonic variables are related as follows,
* Worldsheet: z* = z + nilpotent defines cycle X C Y1, X X
eqUiVa|ent|y Yired = (ZL)red — (ZR)red
x  Moduli: M = m; + nilpotent defines cycle 9T C DM x Mg
equivalently Myeq = (ML )red = (MR )red
— Stokes' theorem ensures independence of choice of cycles
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Worldsheet action for Type |l superstrings

e Worldsheet is > C >, x Xp

— 2.1, has superconformal structure j with local coordinates 2|9~
— Y g has superconformal structure 7 with local coordinates z|6

e Superconformal invariant matter action (i« i vecchia, Howe; Deser, Zumino 1976]

I X*, T, J) = / [d2dz|d0d0] Dz X" DX,
by

— worldsheet matter superfield in local coordinates (Dy = 0y + 00.)
XH(Z,210,0) = 2(Z, 2) + 04H(Z, 2) + 0pH(Z, 2) + 00 F (%, 2)
— Superconformal algebra acting on the fields is generated by

S.o = %@b”@zmu T,, = —%({Laﬁ“@zxu + %wuﬁzwu

Q 1 ~H . 1 v 1 ~,u ~
Sgg — §¢ agiﬂu zz — —585513 agiﬂu —|— Ew 8517&”
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Parametrization of supermoduli

e Local parametrization of bosonic moduli (in conformal-invariant theory)
— Complex structure .J with metric g = |dz|? in local coordinates (z, 2)
— deform complex structure by Beltrami differential to ¢’ = |dz + pudz|?
— realized in CFT by insertion of [ dZdz p:*T..

e Local parametrization of supermoduli (in superconformal-invariant theory)
— Yred and MM..q are obtained by setting all odd Grassmann variables to zero
— Start with Y,..q with complex structure given by J € M eq
— Deformation of super conformal structure by inserting 7" and .S

/ dzdz (:uiz 2z T XZQSZQ)
Ered

— local supersymmetry x:? — xz% + 9:0% and pz® — pz* + 0:(v9x:Y)
— x and u may be parametrized by local coordinates on I},
— nilpotency of y guarantees expansion terminates at finite order 2h — 2
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Higher genus Riemann surfaces

e Compact Riemann surface > of genus h
— Homology group H1 (3, Z) with intersection pairing J
— Choose canonical homology basis 27, B for H (X, 7Z) ~ Z2"
with J(Q[[,Q[J) = 0, 3(‘3[,%]) = 0, 3(%[,%]) —9dyyforI,J=1,---h
— and normalize dual holomorphic (1,0) forms w; by

]{ Wy =017 ]{ wy =817
Ag Bp

— Modular group Sp(2h,Z) leaves J invariant
Q— (AQ+B)(CQ+ D)™ (A B)e Sp(2n,Z)

e The period matrix belongs to the Siegel upper half space ),
Sp = {Q h x h complex matrices Q' = Q,ImQ > 0}

— moduli space My = S55/Sp(4,7) (minus diagonal)
— moduli space M3 = S3/S5p(6,7Z) (minus hyper-elliptic divisor)
— For h > 4 characterizing M, C 8,/Sp(2h,7Z) is the Schottky problem
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The super period matrix

e Compact super Riemann surface > of genus 7 [t rhong 1085
— For even spin structure, there exist h superholomorphic forms w;
which produce a super period matrix €2

7{ Wy =017 jg wy = Qg
Ay B

— Explicit formulas in terms of the Szego kernel S give

A 7

Qg =85 — - // wr(2)xz"Ss(z, w)xa ws(w) + -
— QU is locally supersymmetric with QU — QJI and Im > 0

e For genus /1, = 2
— no additional terms above in 4 - --
— Every ) corresponds to a Riemann surface (away from the diagonal)
— Szego kernel Ss(z, w|?) is non-singular on M,

= The super period matrix provides a holomorphic projection 9, — M,
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Singularities in the projection of 91y — M

e Projection 915 — M5 is holomorphic but 01, — M is not jwien 2013
— There may be singularities on the boundary of 91,

o_ (T u u— 0 separating node
- \u o o — 100  non-separating node

— Key ingredient in € is the Szegd kernel

V[0](z — w|?)

18] (0| E(z, w)

— As u — 0 we have 9[5](0|Q) — 9[8:](0]7) 9[65](0]7)

— Even 6 = [0, d2] with 61,2 odd produces a singularity in Ss and Q)

55(z,w|Q) — 9

e Physical effects
— in flat space-time R!" singularity absent thanks to 1-zero modes
— contribution when susy is broken by radiative corrections [witten 2013]
— two-loop vacuum energy in Heterotic strings on CY orbifold C3/Zy x Zs
* zero for Egs X Eg — Fg x Eg with unbroken susy
* non-zero for Spin(32)/Zs — SO(26) x U(3) with broken susy

[ED, Phong 2013; Berkovits, Witten 2014]
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Singularities in the projection i3 — Mj

e Some basic structure
— A hyper-elliptic surface is a branched double cover of the sphere C =92
— All genus 1 and all genus 2 surfaces are hyper-elliptic
— M3 contains the divisor of hyper-elliptic surfaces

e The period matrix for genus 3 (even spin structure)
A 1
Qry=Qr5 — e // wr(2)xz"S5(z, w)xs'ws(w) + O(x*)

— The hyper-elliptic divisor crosses the interior of 913 along subvarieties
characterized by ¢#[6](0[€2) = 0 for some even spin structure §
where the Szego kernel S5 diverges

— The projection 93 — M3 is not globally holomorphic |witten 2015]

— Predicted by global results on projectedness [ponagi, witten 2014]
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Super period matrix for Ramond punctures

e Moduli space with n punctures dim M., =3h -3 +n >0

e Punctures on super Riemann surfaces
— NS puncture at z = 0 satisfies ¥(e*™ 2) = +1(2)
— R puncture at z = 0 satisfies ¥ (e*™ 2) = —1(2)
— dimension dim My, 2r = (Bh =3 +n+2r12h —2+n+7)

e R-punctures occur in pairs (pn, q,) with R-divisor 7 =357 (p, + q,)
— R-fields are sections of R ™! where R? = K~ ! @ O(—F)

- HY(Z,R™~1) = r giving r holomorphic (3,0) forms p,,

e Period for Ramond punctures [wiie: 2015 0, Phong 2015]
— wr and py resp. odd and even superholomorphlc forms

— R-periods an extracted from wy; QCn extracted from p, on F

0 = (% ) = (o1
Qcr ey Qr¢ =S¢
— Q) with R-punctures may also be derived from non-separating
degeneration of €2 at higher genus without R-punctures
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Evaluating genus 2 superstring amplitudes

e Specialize to genus /» = 2 and even spin structures
— Natural parametrization of 91> using holomorphic projection

mA — (QIJa Cla C2>
XZQ — Cl(S(Z,ql) + C25(27QQ)

— Deformations of complex structure by Beltrami diff. i = O(¢!(¢?)

) g — g=g+p
Q]J—>Q]J (95 — Bgzag—l—,&(?z
(lg) = @)+ [T (9)

— supersymmetry guarantees independence of choice of points g1, ¢
— In particular, absence of earlier ambiguities pointed out by [Atick, Rabin, Sen 1989]
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Chiral splitting and loop momenta

e Loop momenta |verinde, Verlinde 1983 £D, Phong 1988]
* Momentum flowing through a curve is the line integral of the 0,z*
* A canonical homology basis gives a natural choice of loop momenta

e Chiral splitting into chiral blocks o rrong 1959
* Amplitude is given by pairing left and right chiral blocks

AR = 2,0,Q 2,0,0
= [ [ ] Pk pl 0. 0.0 F ) E Koplz 0,00

e F[¢] is locally holomorphic on >3 and 91
* Bosonic moduli paired with the same super period matrix {2
* Integral over 95 includes summation over spin structures o, 0
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Properties of chiral blocks
e Universal monodromy = “homology shift invariance ” [ro rhong 195559

x Moving a vertex point z; around an 2y or ‘B cycle

A

‘F[(S](‘g?k:p‘zz—l_(sw QlJangQ:C) — 627Tikj.pJ‘F[5](87kiap‘z’bH%QaC)
F[5](€7kapl|zz+5w %Jae’bfzaC) — F[é](evkvpl+5§kj|217917§27<>

* Physical amplitude Ag\%) is invariant by translation invariance of [ dp
* Monodromy is universal, valid for bosonic, Type |l, Heterotic strings
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The chiral measure in terms of J-constants

e Chiral measure on )1, for superstrings in \/ = R (b, Phong 2001]

» E6[8](£2) 9[6]*(0, Q)
1676 W1o(2)

dp[s)(,¢) = | Z[61(Q) +¢'¢ d’¢d’Q)

— Spin structures represented by half-integer characteristic ¢ € {0, 1/2}*
— Wq0(£2) = Igusa’s unique cusp modular form of weight 10

— The factor Z[6] may be evaluated as well, but will not be given here.

e The modular form Z¢[6](Q)) may be defined, for genus 2,
— Each even spin structure ¢ uniquely maps to a partition of the
six odd spin structures v;. Let 0 =11+ 19+ 13 =14+ 15 + g

A

01 = S il T 0w+ vy + (0,9

1<i<3<3 k=4,5,6

— Symplectic pairing signature: (v;|v;) = exp 4mi(vjv] — v'vi) € {£1}

e =5/0](Q) admits a natural generalization to genus 3 and 4

[Cacciatori, Della Piazza, Van Geemen 2008; Matone, Volpato 2008; Grushevsky, Salvatti-Mann 2008; Morozov 2008]
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Chiral Amplitudes

e Chiral Amplitudes on i, )
— involve correlation functions Fg, F2 which depend on €2 and on ¢

A

FI1(2,€) = dulo)(©,¢) (Fold] () + ¢ R[0)(Q))

e Projection to chiral amplitudes on M, A
by integrating over odd moduli ¢ at fixed § and fixed {2

=6[0] V[0]*

(@) = [ F10162.0) = (21617201 + 7ils)) 4
¢
¢ Gliozzi-Scherk-Olive projection
— realized by summation over spin structures with constant phases;
— separately in left and right chiral amplitudes for Type |l and Heterotic;
— phases to be determined from requirement of modular covariance.
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Four-graviton amplitude in Type |I

e Projected to M- and summed over spin structures o rrong 2005

(2) _ 2.4 |dQ°|? / YAY y o
AT =R /M2 (detTm Q)3 Jsu (det Tm Q)2 © 251 Glai 210)

1<J

x string momenta k; with s;; = —a'k; - k;/2
* R* = tgtg scalar contraction of four linearized Riemann tensors R
x Measure on X% interlaces kinematic and worldsheet data

Y = 514A(21,22)A(23, 24) — 512A(21, 24) A( 22, 23)
A(z,w) = wi(z)wa(w) — wa(z)wr(w)
* Standard string Green function in terms of the prime form E(z, w|Q)
G(z,w|Q) = —In|E(z, w|Q)|” + 2r(Im Q);, Im / Wy Im/wJ
e o/ expansion matches S-duality predictions in Type IIB for BPS operators

* coefficient of D4R4 [ED, Gutperle, Phong 2005; Gomez, Mafra 2010]
* coefficient of D6R4 [ED, Green, Pioline, Russo 2014]
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Five-graviton amplitude in Type |l

e Massless NS states; even spin structures [co, schiorerer 2021] (152 pages 1)
I
F5 = 152{ (e i Vi + ki Tip) _Zyltijgz',j}
J#i

e Universal chiral Koba-Nielsen factor, common to all string theories

Zj
Ty = exp {iTK‘Q]JpI - pJ + 27Tiz k; -pI/ wr — Z si; In E(z, zj|Q)}
J

20 i#]
e Kinematic combinations of [/ = k'’ — ke
t1 = ts(f2, f3, fa, f5) tiz = ts([f1, fal, f3, fa, f5)

e Remaining ingredients

‘BI = 27TipI + Z gz'l,jkj gil,j Yy lnﬁ[u](zj — 2;|2)

JF#i
Yr = 4s1owr(4)A(5,1)A(2,3) + cycl(1,2,3,4,5)
Tir = (2241 k) {wr(B)A(L,5)A(2,4) + oyel(3,4,5) } + oyel(2,3,4,5)

e Remarkably simple !
* Also obtained by amalgam of chiral splitting and pure spinor strings

[ED, Mafra, Pioline, Schlotterer 2020] using [Gomez, Mafra, Schlotterer 2015]
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Spin structure sums for higher multiplicity

e Major effort goes into evaluating sums over spin structures
* required for GSO projection onto supersymmetric amplitudes
* required to project to Fg X Eg or Spin(32/7Zs) in Heterotic strings

e Even spin structures and NS external states
* Correlator of chiral fermions for spin structure 6 given by Szego kernel

ol wl)
I[0](0|Q)E(z, w)

* String amplitude integrands involve cyclic products of Szego kernels
Cs(z1, -, zn) = Ss(21, 22)Ss(22, 23) - - - Ss(2n—1, 2n)Ss(2n, 21)

(they also involve other products that may be treated similarly)

(Y (2)¢(w)) = Ss(z, w)

* Evaluating the spin structure sums for n = 4,5 point amplitudes involved
— Riemann identities; Fay trisecant identity (cfr bosonization)
— and every other trick we could think of

= those methods show no promising generalization to n > 6
— the problem was also considered in [Tsuchiya 2012; 2017; 2022]
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Reduction of higher multiplicity spin structure sums

e Theorem [0 Hidding, Schiotterer 2022]
The spin structure sum of Cs(z1,- -+ , z,) for arbitrary n
reduces to the spin structure sums for the cases n = 0,2, 3,4

* The proof is constructive in the hyper-elliptic formulation
* The result will be translated into the ¥J-function formulation

e Every genus two surface > is hyper-elliptic
* namely a double cover of the Riemann sphere C = C U {oo}
* ramified over 6 branch points uq,--- , ug
x points z € X parametrized by z = (x, s) where s = (v —uy) -+ (x — ug)
*x Moduli space M5 isomorphic to {uy, -+ ,ug}/(SL(2,C) x &)

U
3 6
U4
Us
(0]
0
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Sketch of proof of the Theorem

* An even spin structure o is isomorphic to a 3 + 3 partition of branch points
{uy, -+ ,ug} = AUB ANB =1 |A| = |B| =3

* The Szego kernel is given in terms of this partition by

sa(z1)sp(z2) + sp(r1)sa(x2) { dxi dxo ]%

2(xy — x2) s(x1) s(x2)

where s4(x)sg(z) = s(x) and s4(x)? and sp(x)? are polynomials given by

sa@?=[@-w)  ss@?=]]@—u)

rcA reB

55(217 22) —

x The cyclic product of Szego kernels is thus given by (using x, 11 = x1)

[T;_i(sa(xi)sp(xiv1) + sp(xi)sa(wit1) dxi---dzy,

2" X12T23 * * * T s(x1) -+ s(xn)

Cs(z1,- - 2zn) =

e Lemma 1
All spin structure dependence is contained in polynomials with 2m <n

m

Q5(i17 o 7im|j17 o 7]m) — H SA(mia)QSB(xja)2 -+ (A — B)

a=1
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Sketch of proof of the Theorem (cont’d)

e Lemma 2
All spin structure dependence of ()5 is polynomial in £(1;1, E};Q — £§1, £§2

2(151 — %04252 — 2—%,u4 sA(a:)z = 2% — o2’ 4+ agx — Qa3
0 = (1B + a2fr) — 513 sp(x)? = 2° — Biz” + Box — B
€7 = o B — Fuo s(z)? =a° — ma’ + - — psw + pg

e Lemma 3: The trilinear relations
Every trilinear £ £3“4 7% may be exprel.ise%as a po2/%/nomia/
of total degree two in the combinations €5, £5s° and €5~ whose
coefficients are polynomials in [i1, - | [ig

e Combining Lemmas 1, 2 and 3 implies that all spin structure dependence
of (s is given by a quadratic polynomial in £§1,£§2,£§2
with coefficients that depend only on ;.

e The spin structure sums of the linears £5'“? and of the bilinears £5'"2 03"
are determined by N-point functions with N < 4,
which concludes the proof of the Theorem.
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SL(2,C) tensorial structure of the trilinear relations

e Component form of the trilinear relations e.g.

11,2 11,12 12,2 2,11 11 11 12
(eA1)3 = Ha(ls )™ psls L5 v oeelle22 pe(€s™)”  pybs”  Ongusls”  3popels | mamsts
0 20 4 6% %6 4 50 160 20 40

12 2,22 22 3 2 2
B 9#3#655 B M5£5 3#4#655 B 3py gy s B 3uopy B 8luspue  Yuopgpg
80 16 20 2000 1600 320 6400 400

e The ¢}" transform under the 3-dimensional irrep of SL(2,C) by

a f

ab a b pcd
L — Jg.g,%8s gZ(fy 5

) € SL(2,C) J=1]0w+6)""

e The trilinear relations in S/ (2,C) tensorial form

(ayag pagay pasag) bibg(ay-rag pagag) pcico

ajag __ 3 png21a2b1-bg pcicg pegey
* where M is the symmetric rank 6 tensor under SL (2, C) with components

111111 111112 ps 111122 1y
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Sp(4,7) tensorial structure of the trilinear relations

e Correspondence between hyper-elliptic and J-function formulations
* via standard Thomae formulas and holomorphic 1-forms w;
dx T dx

W = (2) o = _s(:c) wi(z) = wu(z) o'

* we obtain the modular tensors £s and 2 (6 transforms)

9[61(0)2°
g~ o= Zovin (20O

ai-ag Iy I _ 340 Ig)
M, — = W50 19[11](0) - - - 079 we] (0)

* where v, - -+ | vg are the six (distinct) odd spin structures

e Trilinear relations are between Sp(4,7) modular tensors

(I11g l3ly @lslg) J1do(I1 1y qlslg) @K1Ko
25 25 25 = N 25 25

1 EJ1K1 EJgKy T *

I19 3 INIgJy-Jy aK1Ko @K3Ky



Eric D'Hoker Supermoduli and superstring Amplitudes

Modular tensors

e Structure of (locally holomorphic) modular tensors under Sp(4,7)
* totally symmetric tensor ¥ of rank r and weight w
x transforms under (4 B) € Sp(4,Z) by

e Classic Siegel modular forms of weight w correspond to rank » = 0
*x Sp(4,7): polynomial ring generated by Wy, Ug, U1, Uio, W3y [ieus]

e Non-holomorphic modular tensors arise in the o/ expansion
* related to the Kawazumi-Zhang invariant [Kawazumi 2008:Zhang 2008; Kawazumi 2016]
* hlgher genus mOdU|ar gra ph functions [ED, Green, Pioline, Schlotterer 2020; ED, Schlotterer 2021]
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Summary and outlook

e Four- and Five-point 2-loop amplitudes
* direct calculation for even spin structure using supermoduli
* remarkable simplicity of the final amplitude

e Higher point 2-loop amplitudes
* all even spin structures sums available via modular tensors

¢ Ring structure for modular tensors of arbitrary rank and weight
* what are the generators ?
* which subspace is needed for string amplitudes ?

e What is the structure of string amplitudes ?
x the expansion in o’ showed extensive structure
— modular graph functions and relation to polylogarithms cfr Schlotterer’s talk

x finite o involves modular tensors and intertwined kinematic dependence
— can one build an efficient library for these structures ?



