Cascade flow from $\mathcal{N}=2$ to adjoint QCD

Eric D'Hoker

Mani L. Bhaumik Institute for Theoretical Physics, UCLA

26 April 2023

Department of Physics and Astronomy, Uppsala University

with Thomas Dumitrescu, Efrat Gerchkovitz and Emily Nardoni 2012.11843; 2208.11502; 23XX.XXXX

Motivation

- Seiberg-Witten solution for $\mathcal{N}=2$ super Yang-Mills [Seiberg, Witten 1994]
 - * on the Coulomb branch via Abelian gauge theory
 * provides the exact low energy effective action and BPS spectrum
 * dyons become massless at singular points on Coulomb branch
- Softly breaking $\mathcal{N} = 2$ supersymmetry \star exploit the enhanced control provided by the SW solution
- Earlier investigations into softly breaking $\mathcal{N}=2$
 - * e.g. $\rightarrow \mathcal{N} = 1$ exhibits confinement [Seiberg, Witten 1994] via magnetic monopole condensation
 - \star e.g. other proposals
 - dilaton spurion [Alvarez-Gaumé, Distler, Kounnas, Marino, 1996]
 - explicit breaking [Luty, Ratazzi 1999; Edelstein, Fuertes, Mas, Guilarte, 2000]
 - \star embedding adjoint QCD in $\mathcal{N}=2$ [Cordova, Dumitrescu 2018] (more soon)

This talk

• Consider $\mathcal{N}=2$ super-Yang-Mills with gauge group SU(N)

 \star no SU(N) hypermultiplets

- \star gauge multiplet $(\phi,\lambda^1,\lambda^2,v_\mu)$ in adjoint rep of SU(N)
- \star Coulomb branch = VEVs for ϕ with zero potential and unbroken $\mathcal{N}=2$

• Add mass term $M^2 tr(\phi^{\dagger}\phi)$ for gauge scalars ϕ to potential

- * softly breaks all supersymmetries
- \star but preserves all other symmetries and 't Hooft anomalies
- $\star \phi$ decouples as $M \to \infty$ to adjoint QCD $(\lambda^1, \lambda^2, v_\mu)$ with two flavors

• What is the phase structure across the flow $0 < M < \infty$?

* We will propose and (approximately) solve semi-classically

magnetic dual Abelian Higgs model

 \Rightarrow Cascade of phase transitions through partial Coulomb/Higgs phases

$\mathcal{N}=2$ super Yang-Mills with gauge group SU(N)

• $\mathcal{N} = 2$ gauge multiplet $(\phi, \lambda^1, \lambda^2, v_\mu)$

 $\mathcal{L}_{\mathsf{SU}(\mathsf{N})} = -\frac{1}{2g^2} \operatorname{tr}(v_{\mu\nu}v^{\mu\nu}) - \frac{2}{g^2} \operatorname{tr}(D^{\mu}\phi^{\dagger}D_{\mu}\phi) - \frac{1}{g^2} \operatorname{tr}[\phi^{\dagger},\phi]^2 + \text{ fermions}$

* $SU(2)_R$ symmetry of the $\mathcal{N} = 2$ super Poincaré algebra * $U(1)_R \rightarrow \mathbb{Z}_{4N}$ by anomaly and instanton induced 't Hooft interaction

- Coulomb branch vacua $[\phi^{\dagger}, \phi] = 0$ have unbroken $\mathcal{N} = 2$
 - \star at generic point on the Coulomb branch $SU(N) \longrightarrow U(1)^{N-1}$
 - \star low energy : $\mathcal{N} = 2$ gauge $U(1)_k$ multiplets for $k = 1, \cdots, N-1$ decomposed into $\mathcal{N} = 1$ chiral A_k and gauge V_k multiplets

$$\mathcal{L}_{SW} = \frac{\mathrm{Im}}{4\pi} \sum_{k=1}^{N-1} \int d^4\theta A_{Dk} \bar{A}_k + \frac{\mathrm{Im}}{8\pi} \sum_{k,\ell=1}^{n-1} \int d^2\theta \,\tau_{k\ell} \,W_k W_\ell$$

* fully specified by a locally holomorphic pre-potential $\mathcal{F}(A_1, \cdots A_{N-1})$

$$A_{Dk} = \frac{\partial \mathcal{F}}{\partial A_k} \qquad \qquad \tau_{k\ell} = \frac{\partial^2 \mathcal{F}}{\partial A_k \partial A_\ell} \qquad \qquad W_k^{\alpha} = -\frac{1}{4} \bar{D} \bar{D} D^{\alpha} V_k$$

 \star subject to $\mathrm{Im}\,\tau>0$ for positive kinetic term

The Seiberg-Witten solution

- The Seiberg-Witten solution determines the pre-potential
 - $\star \mathcal{F}$ only depends on the fields A_k and not on their derivatives
 - \star It suffices to evaluate \mathcal{F} on the vevs $\langle A_k \rangle = a_k$ and $\langle A_{Dk} \rangle = a_{Dk}$
- Family of SW curves for SU(N) [Klemm, Lerche, Yankielowicz, Theisen; Argyres, Faraggi 1994] \star parametrized by gauge-invariant moduli $u_n = \operatorname{tr}(\phi^n)$

$$y^{2} = C(x)^{2} - \Lambda^{2N}$$
 $C(x) = x^{N} - \sum_{n=2}^{N} u_{n}x^{N-n}$

* Hyper-elliptic of genus N - 1: Canonical basis $\mathfrak{A}_k, \mathfrak{B}_k$ for $k = 1, \cdots, N - 1$ namely $\#(\mathfrak{A}_k, \mathfrak{A}_\ell) = \#(\mathfrak{B}_k, \mathfrak{B}_\ell) = 0$ and $\#(\mathfrak{A}_k, \mathfrak{B}_\ell) = \delta_{k\ell}$

• Solution given by periods of SW differential λ

$$a_k = \oint_{\mathfrak{A}_k} \lambda \qquad a_{Dk} = \frac{\partial \mathcal{F}}{\partial a_k} = \oint_{\mathfrak{B}_k} \lambda \qquad \lambda = \frac{xC'dx}{2\pi i y}$$

 \star Riemann bilinear relations guarantee $\mathrm{Im}\,\tau>0$

 \star Mass of BPS dyon with electric charges q_k and magnetic charges m_k

$$M_{\mathsf{BPS}}(\mathbf{q};\mathbf{m}) = \sqrt{2}|Z| \qquad \qquad Z = \sum_{k=1}^{N-1} \left(q_k a_k + m_k a_{Dk} \right) \qquad \qquad \mathbf{q}, \mathbf{m} \in \mathbb{Z}^{N-1}$$

Special points on the Coulomb branch

• Special points: enhanced symmetry or vanishing masses or both

- \star a single \mathbb{Z}_{2N} symmetric point
 - with curve $y^2 = x^{2N} \Lambda^{2N}$
 - no massless BPS states

 \implies a convergent Taylor series exists at the \mathbb{Z}_{2N} point [ED, Dumitrescu, Nardoni 2022]

 \star two different \mathbb{Z}_N symmetric "Argyres-Douglas points"

– with curves
$$y^2 = x^N (x^N \pm 2 \Lambda^N)$$

- $-\frac{1}{2}N(N-1)$ massless dyons that are mutually non-local for $N \ge 3$
- $\star N$ different \mathbb{Z}_2 symmetric "multi-monopole points"
 - mapped into one another by \mathbb{Z}_N
 - with curves $y^2 = \Lambda^{2N} \sinh^2 \left(N \arccos(x/2N) \right)$ (Chebyshev polynomials)
 - -N-1 massless magnetic monopoles that are mutually local

Near a multi-monopole point

- Approaching a multi-monopole point [Douglas, Shenker 1995]
 - * magnetic periods $a_{Dk} \rightarrow 0$ so that $M_{\text{BPS}}(\mathbf{0}, \mathbf{m}) \rightarrow 0$
 - \star electric periods $a_k \not\rightarrow 0$ so that $M_{\mathsf{BPS}}(\mathbf{q}, \mathbf{0})$ remains finite

$$a_k = -\frac{2N\Lambda}{\pi} \sin\frac{k\pi}{N} - \frac{i}{2\pi} a_{Dk} \ln\frac{a_{Dk}}{\Lambda} + \mathcal{O}(a_D)$$

 \bullet Massless states produce singularities in τ

* expected running of the U(1) gauge couplings – one-loop exact RG β function

$$\tau_{k\ell} = -\frac{i\,\delta_{k\ell}}{2\pi}\ln\frac{a_{Dk}}{\Lambda} + \mathcal{O}(a_D^0)$$

- \star the Seiberg-Witten low energy effective Lagrangian breaks down
 - because it integrated out the light/massless magnetic monopole states
- \Longrightarrow viable low energy effective theory obtained by keeping massless states

Effective Abelian Higgs model

- Introduce N 1 magnetic monopole fields \mathcal{H}_k , $k = 1, \cdots, N 1$ \star hyper-multiplets of $\mathcal{N} = 2$ for gauge group $U(1)^{N-1}$
 - * with charge vector $(\mathbf{0}; \mathbf{m}_k)$ where $(\mathbf{m}_k)^{\ell} = \delta_k^{\ell}$

$$\mathcal{H}_k = (h_{ik}, \psi_{+k}, \bar{\psi}_{-k}) \qquad \qquad \bar{\mathcal{H}}_k = (\bar{h}_k^i, \bar{\psi}_{+k}, \psi_{-k})$$

 \star the index i=1,2 labels the doublet representation of $SU(2)_R$ \star in terms of $\mathcal{N}=1$ superfields with auxiliary fields F_k^\pm

$$\mathcal{H}_{k}^{+} = (h_{1k}, \psi_{+k}, F_{k}^{+}) \qquad \qquad \mathcal{H}_{k}^{-} = (\bar{h}_{k}^{2}, \psi_{-k}, F_{k}^{-})$$

• Effective Lagrangian including magnetic monopole hyper-multiplets \star dictated by $\mathcal{N} = 2$ supersymmetry

$$\mathcal{L}_{\mathsf{SW}}^{\text{eff}} = \sum_{k=1}^{N-1} \left[\int d^4\theta \left(\bar{\mathcal{H}}_k^+ e^{-2V_k} \mathcal{H}_k^+ + \bar{\mathcal{H}}_k^- e^{+2V_k} \mathcal{H}_k^- + \frac{\text{Im}}{2\pi} \bar{A}_k A_{Dk} \right) \right. \\ \left. + 2\text{Re} \int d^2\theta A_{Dk} \mathcal{H}_k^+ \mathcal{H}_k^- \right] + \sum_{k,\ell=1}^{N-1} \frac{\text{Im}}{4\pi} \int d^2\theta \, \tau_{Dk\ell}^{\text{eff}} W_k W_\ell$$

 \star where $W_k^{lpha} = -\frac{1}{4} \bar{D} \bar{D} D^{lpha} V_k$ and V_k are the $\mathcal{N} = 1$ gauge multiplets of $U(1)^{N-1}$

Effective periods and gauge couplings

• Retaining magnetic monopole fields changes the periods

- \star near a multi monopole point we still have $a_{Dk}
 ightarrow 0$
- \star including the magnetic monopole fields below renormalization scale μ
 - removes their contribution from the one-loop exact β -function

$$a_k^{\text{eff}} = -\frac{2N\Lambda}{\pi} \sin\frac{k\pi}{N} - \frac{i}{2\pi} a_{Dk} \ln\frac{\mu}{\Lambda} + \mathcal{O}(a_D)$$

• Gauge couplings $\tau_{k\ell}$ are now free of singularities as $a_{Dk} \rightarrow 0$ * we shall need the precise normalizations [ED, Dumitrescu, Gerchkovitz, Nardoni 2020]

$$\tau_{k\ell}^{\text{eff}} = \frac{i}{2\pi} \left(\delta_{k\ell} \ln \frac{\Lambda}{\mu} + \ln L_{k\ell} \right) + \mathcal{O}(a_D)$$

 \star where L is given in terms of $c_k = \cos(k\pi/N)$ and $s_k = \sin(k\pi/N)$

$$L_{kk} = 16Ns_k^3$$
 $L_{k\ell} = \frac{1 - c_{k+\ell}}{1 - c_{k-\ell}}$ $k \neq \ell$

 \star order $\mathcal{O}(a_D)$ corrections to au are known as well [ED, Phong 1997]

Soft supersymmetry breaking operator

• Flow from $\mathcal{N}=2$ to adjoint QCD is controlled by the operator \mathcal{T}

 $\mathcal{T} = 2g^{-2}\operatorname{tr}(\phi^{\dagger}\phi)$

 $\star \mathcal{L}_{SU(N)} \rightarrow \mathcal{L}_{SU(N)} - M^2 \mathcal{T}$ breaks susy completely

- * but preserves all other symmetries and 't Hooft anomalies
- $\star~M \rightarrow \infty$ decouples ϕ leaving adjoint QCD with two Weyl fermions
- IR behavior of \mathcal{T} in $\mathcal{N}=2$ theory governed by SW theory
 - * \mathcal{T} is the lowest component of the $\mathcal{N} = 2$ stress tensor multiplet - as such its dimension is protected
 - * flows towards the Kähler potential which, in SW theory, is given by

$$\mathcal{T} \to \frac{i}{4\pi} \sum_{k=1}^{N-1} \left(\bar{A}_{Dk} A_k - \bar{A}_k A_{Dk} \right)$$

- \star In the effective theory near a multi-monopole point
 - with magnetic monopole hyper-multiplet fields integrated in
 - ${\mathcal T}$ evaluates on the corresponding periods

$$\mathcal{T} \to \frac{i}{4\pi} \sum_{k=1}^{N-1} \left(\bar{a}_{Dk}^{\text{eff}} a_k^{\text{eff}} - \bar{a}_k^{\text{eff}} a_{Dk}^{\text{eff}} \right) - \frac{1}{2} \sum_k \bar{h}_k h_k$$

The Kähler potential on the Coulomb branch

- $M^2 \mathcal{T}$ will drive vacuum towards minimum of \mathcal{T}
 - \star How does the Kähler potential ${\mathcal T}$ behave ?
 - \star Clearly $\mathcal{T} = 0$ at multi-monopole points since $a_{Dk} = 0$ for all N

• Hyper-elliptic periods are not standard special functions for $N \geq 3$

- \star Multiple Taylor series expansion at \mathbb{Z}_{2N} point, finite radius
- * Numerical integration of Kähler potential
- * Numerical integration of Picard-Fuchs eqs

$$\star$$
 $N=3$ curve $y^2=(x^3-ux-v)^2-\Lambda^6$

- \implies minimum of \mathcal{T} at \mathbb{Z}_6 point
- $\star N > 3$ compelling evidence

 \implies minimum of \mathcal{T} at \mathbb{Z}_{2N} point

[ED, Dumitrescu, Nardoni 2022]

The Abelian Higgs model with susy breaking

• Quadratic approximation for \mathcal{T}

$$\mathcal{T} \approx \sum_{k=1}^{N-1} \left(\frac{N\Lambda}{\pi^2} s_k \operatorname{Im}\left(a_{Dk}\right) - \frac{1}{2}\bar{h}_k h_k \right) + \sum_{k,\ell=1}^{N-1} t_{k\ell} \,\bar{a}_{Dk} \,a_{D\ell} \qquad t_{k\ell} = \frac{\operatorname{Im}\tau_{k\ell}^{\text{eff}}}{2\pi}$$

* symmetric matrix t is positive definite with positive entries for $\mu/\Lambda \ll 1$ * leads to renormalizable effective theory

• Assembling all the contributions to the Abelian Higgs model

 \star incorporate susy breaking operator $M^2 \mathcal{T}$ in the quadratic approximation \star retain only the effective potential of the model (to study vacua)

$$\mathcal{V} = \sum_{k=1}^{N-1} \left(\frac{M^2 N \Lambda}{\pi^2} s_k \text{Im}(a_{Dk}) + \left[2|a_{Dk}|^2 - \frac{1}{2}M^2 \right] \bar{h}_k h_k \right)$$

$$+\sum_{k,\ell=1}^{N-1} \left(M^2 t_{k\ell} a_{Dk} \bar{a}_{D\ell} + (t^{-1})_{k\ell} \left[(\bar{h}_k h_\ell) (\bar{h}_\ell h_k) - \frac{1}{2} (\bar{h}_k h_k) (\bar{h}_\ell h_\ell) \right] \right)$$

• **Proposal:** Abelian Higgs model is dual to flow from $\mathcal{N} = 2$ to adjoint QCD \star for small M back-reaction of \mathcal{T} on flow can be ignored

 \star for larger M we present evidence in favor of a coherent picture

Vacuum alignment

• Minima of \mathcal{V} occur at $\operatorname{Re}(a_{Dk}) = 0$

 \star preserves a combination of charge conjugation C, time reversal T, and \mathbb{Z}_{4N}

$$a_{Dk} = -iMx_k \qquad \qquad k \in \mathbb{R}$$

• The Higgs fields h_k align perfectly as $SU(2)_R$ doublets \star minimize \mathcal{V} for given values of $\bar{h}_k h_k$; orientation dependence:

$$\mathcal{V}\Big|_{\bar{h}_k h_k} = \sum_{k,\ell} (t^{-1})_{k\ell} \mathbf{v}_k \cdot \mathbf{v}_\ell \qquad \mathbf{v}_k = \bar{h}_k \boldsymbol{\sigma} h_k \qquad h_k = \begin{pmatrix} h_k^1 \\ h_k^2 \end{pmatrix}$$

 \star diagonal contribution $k = \ell$ is given by fixing $\bar{h}_k h_k = \mathbf{v}_k^2$

 \star ground state is ferromagnetic under the mild assumptions

$$(t^{-1})_{k\ell} < 0 \qquad \qquad k \neq \ell$$

★ found to hold for sufficiently small μ/Λ ★ choose direction $h_k^1 = Mh_k, h_k^2 = 0, h_k \in \mathbb{R}^+$

SU(2)_R is spontaneously broken as soon as any h_k ≠ 0
 ★ producing two Goldstone bosons SU(2)_R → U(1)_R i.e. CP¹-phase
 ★ matches expected chiral symmetry breaking in adjoint QCD ⟨λⁱλ^j⟩ ≠ 0

Simplified Abelian Higgs model

• Vacuum alignment greatly simplifies the analysis of the potential

$$\begin{cases} a_{Dk} = -iM x_k \\ h_k^i = M\delta_1^i h_k \end{cases} \qquad \qquad \kappa = \frac{N\Lambda}{\pi^2 M} \end{cases}$$

 \star in terms of these dimensionless real variables

$$\frac{\mathcal{V}}{M^4} = \sum_{k=1}^{N-1} \left(\frac{1}{2} (4x_k^2 - 1)h_k^2 - \kappa s_k x_k \right) + \sum_{k,\ell=1}^{N-1} \left(t_{k\ell} x_k x_\ell + \frac{1}{2} (t^{-1})_{k\ell} h_k^2 h_\ell^2 \right)$$

• Reduced field equations for space-time independent VEVs x_k, h_k

$$2h_k^2 x_k + \sum_{\ell=1}^{N-1} t_{k\ell} x_\ell = \kappa s_k \qquad h_k \Big(4x_k^2 - 1 + 2\sum_{\ell=1}^{N-1} (t^{-1})_{k\ell} h_\ell^2 \Big) = 0$$

• Potential \mathcal{V} and field eqs are invariant under charge conjugation C

$$\begin{cases} s_k = s_{N-k} \\ t_{k,\ell} = t_{N-k,N-\ell} \end{cases} \qquad \begin{cases} x_k \to x_{N-k} \\ h_k \to h_{N-k} \end{cases}$$

Organization of semi-classical analysis

• Steps in semi-classical analysis

- \star Existence of solutions for given N,κ
- * Local stability of solutions: positive Hessian on the solution
- \star Global stability of solutions: global minimum of ${\mathcal V}$ for given N,κ
- Solutions to Higgs eqs organized by partitions A|B

$$k \in A$$
 $h_k = 0$
 $k \in B$ $4x_k^2 - 1 + 2\sum_{\ell=1}^{N-1} (t^{-1})_{k\ell} h_\ell^2 = 0$

- * Clearly $A \cup B = \{1, \cdots, N-1\}$ and $A \cap B = \emptyset$
- * Partitions are ordered: $A|B \neq B|A$

• In a given partition A|B, solve for h_k , $k \in B$ in terms of x \star define the submatrix u of dimension #(B) by

$$(t^{-1})_{k\ell} = (u^{-1})_{k\ell} \text{ for } k, \ell \in B$$

 \star The matrix u is positive, with positive definite entries, just as t is

$$2h_k^2 = \sum_{\ell \in B} u_{k\ell} (1 - 4x_\ell^2) \qquad k \in B$$

Reduced field equations and potential

• Eliminate h_{ℓ} for $\ell \in B$; solve for x_k with $k \in A$ in terms of $x_m, m \in B$ \star First solve the equations for x_{ℓ} with $\ell \in B$

$$\ell \in B \qquad \qquad x_{\ell} + \sum_{m,n \in B} (u^{-1})_{\ell m} x_m u_{mn} (1 - 4x_n^2) = \kappa (t^{-1}s)_{\ell}$$

* Then solve for x_k with $k \in A$, using the matrix $\sigma = (t|_A)^{-1}$

$$k \in A$$
 $x_k = \sum_{m \in A} \sigma_{km} \Big(\kappa s_m - \sum_{n \in B} t_{mn} x_n \Big)$

• The reduced potential may be expressed in terms of $x_{\ell}, \ell \in B$

$$\mathcal{V}_{\text{red}} = \mathcal{V}_0 + \sum_{k,\ell \in B} u_{k\ell} \left[(x_k - \kappa(t^{-1}s_k)(x_\ell - \kappa(t^{-1}s_\ell) - \frac{1}{8}(1 - 4x_k^2)(1 - 4x_k^2)) \right]$$

 \star where \mathcal{V}_0 is the potential for the partition $B=\emptyset$

$${\mathcal V}_0 = -\kappa^2 \sum_{k,\ell=1}^{N-1} (t^{-1})_{k\ell} s_k s_\ell$$

 \star Partition $B = \emptyset$ and potential \mathcal{V}_0 correspond to the "Coulomb branch"

• The Hessian may be similarly reduced to investigate local stability

Large κ and small κ

- Coulomb branch for sufficiently large κ (i.e. small M)
 - \star Coulomb branch has $B = \emptyset$, namely all Higgs h_k vanishing
 - * locally stable when $2(t^{-1}s)_k < 1$ for all $k = \{1, \dots, N-1\}$
 - * Charge conjugation invariant

 $\sqrt{}$ Small perturbation of $\mathcal{N}=2$ theory stays in the Coulomb branch

- Maximal Higgs branch for sufficiently small κ (i.e. large M)
 - * Maximal Higgs branch has $A = \emptyset$, namely all Higgs h_k non-vanishing
 - \star locally stable for sufficiently small κ
 - * Charge conjugation invariant

 \sqrt{M} Magnetic monopole condensation implies confinement in adjoint QCD

- $\sqrt{\text{Chiral } SU(2)_R}$ symmetry of adjoint QCD is spontaneously broken to
- Existence follows from $\ell \in B$ -equations for arbitrary partition

$$x_{\ell} + \sum_{m,n\in B} (u^{-1})_{\ell m} x_m u_{mn} (1 - 4x_n^2) = \kappa (t^{-1}s)_{\ell}$$

* $\kappa \to \infty$ requires $x_m \to \infty$ which would violate $h_{\ell}^2 > 0$ * $\kappa \to 0$ requires $x_m \to 0$ which forces $h_{\ell}^2 \neq 0$ for all $\ell \in \{1, \dots, N-1\}$

Gauge group SU(2)

• Only two possible branches [Cordova, Dumitrescu 2018]

- * Coulomb $h_1 = 0$ implies $x_1 = \kappa/t_{11}$; potential $\mathcal{V}_{red} = \mathcal{V}_0$
- * Higgs $h_1 \neq 0$ implies $2x_1 4x_1^3 = \kappa/t_{11}$ - potential $\mathcal{V}_{red} = \mathcal{V}_0 - \frac{1}{8}t_{11}(1 - 8x_1^2)(1 - 4x_1^2)^2$

Gauge group SU(3)

- Three possible *C*-inequivalent branches
 - * Coulomb branch $h_k = 0$ implies $x_k = \kappa(t^{-1})_k$ for k = 1, 2
 - * Mixed branch $h_1 \neq 0, h_2 = 0$ (and its image under C: $h_2 \neq 0, h_1 = 0$)
 - * Maximal Higgs branch $h_k \neq 0$ for k = 1, 2
- Immediate consequences of existence, local and global stability
 - \star Maximal Higgs subbranch $h_1, h_2 \neq 0, h_2 \neq h_1$ is locally unstable
 - * Maximal Higgs subbranch $h_1 = h_2 \neq 0$ is locally stable, when it exists
 - * Mixed branch $h_1 \neq 0, h_2 = 0$ has higher potential than $h_1 = h_2 \neq 0$
- Phase diagram = SU(2) with adapted parameters for $x = x_1 = x_2$

Gauge group SU(4)

• Possible *C*-inequivalent branches

- * Coulomb branch $h_k = 0$ for k = 1, 2, 3
- * Single Higgs branch $h_1 \neq 0, h_2, h_3 = 0$
- * Single Higgs branch $h_2 \neq 0, h_1, h_3 = 0$
- * Double Higgs branch $h_1, h_2 \neq 0, h_3 = 0$
- * Double Higgs branch $h_1, h_3 \neq 0, h_2 = 0$
- * Maximal Higgs branch $h_1, h_2, h_3 \neq 0$

 \star All solutions in double Higgs branch

have $h_1 = h_3 \neq 0, \ h_2 = 0$

Cascade flow for arbitrary gauge group $SU({\cal N})$

• For larger values of N the numerics is underway, e.g. for SU(7) etc

- * Evidence for phases intermediate between Coulomb and Maximal Higgs
- \star Make $\mu/\Lambda \ll 1$ so that diagonal of matrix t dominates
- \implies Pairs $h_n = h_{N-n}$ decouple from one another: N-1 copies of SU(2) case
 - transition point governed by $\kappa(t^{-1}s)_n$ crossing $3/4\sqrt{2}$

Summary and Outlook

- Proposal for Abelian Higgs model dual to flow from $\mathcal{N}=2$ to adjoint QCD
 - * Magnetic monopole fields have been "integrated in"
 - * Soft susy breaking operator flows to Kähler potential of SW theory
 - * Unique minimum of Kähler potential allows for quadratic approximation

• Semi-classical Abelian Higgs model matches SU(N) theory

- \star For small susy breaking mass M, stay in Coulomb branch
- \star For increasing M, spontaneous breaking of $SU(2)_R$
 - matches chiral symmetry breaking in adjoint QCD
- \star Vacuum alignment guarantees only two Goldstone bosons CP¹ phase
- \star For large M, Abelian Higgs model predicts monopole condensation
 - matches confinement in adjoint QCD
- Semi-classical analysis of Abelian Higgs model predicts
 - * Intermediate phases between Coulomb and Maximal Higgs phases
 - * Approximations predict a cascade of phases
 - in which pairs of C-conjugate Higgs successively acquire VEVs
- Solidify semi-classical calculations
 - * consider additional tests on validity of dual picture

Cascade flow from $\mathcal{N}=2$ to adjoint QCD

Thank you

Expansion around the \mathbb{Z}_{2N} point

• At the \mathbb{Z}_{2N} point, the curve is $y^2 = x^{2N} - \Lambda^{2N}$ \star Branch points at 2N-th roots of unity, generated by $\varepsilon = e^{2\pi i/2N}$

• Recall the general curve

 \star for arbitrary moduli u_n of the Coulomb branch

$$y^{2} = C(x)^{2} - \Lambda^{2N}$$
 $C(x) = x^{N} - \sum_{n=2}^{N} u_{n} x^{N-2}$

λT

Expansion around the \mathbb{Z}_{2N} point (cont'd)

 \star The periods a_k , a_{Dk} are expressed as follows

$$a_{I} = \sum_{J=1}^{I} \left\{ Q(\varepsilon^{2J-1}) - Q(\varepsilon^{2J-2}) \right\} \qquad a_{DI} = Q(\varepsilon^{2I}) - Q(\varepsilon^{2I-1})$$

 $\star Q(\xi)$ is a function on the 2N-th roots of unity ξ (i.e. $\xi^{2N} = 1$)

$$\pi i \, Q(\xi) = \int_0^\xi \lambda$$

 \star The function $Q(\xi)$ has the following series expansion around $u_n = 0$

$$Q(\xi) = \sum_{\substack{\{\ell_n\}=0\\n=0,\dots,N-2}}^{\infty} V_{L,M}(\xi) \frac{u_0^{\ell_0} \cdots u_{N-2}^{\ell_{N-2}}}{\ell_0! \cdots \ell_{N-2}!} \qquad L = \sum_{j=0}^{N-2} j\ell_j \qquad M = \sum_{j=0}^{N-2} \ell_j$$

 \star where the coefficients $V_{L,M}(\xi)$ are given by

$$V_{L,M}(\xi) = \frac{2^{M-(L+1)/N}}{2N} \xi^{NM+L+N+1} \frac{\Gamma(\frac{L+1}{N})}{\Gamma(\frac{2N+1+L-MN}{2N})^2}$$

* Series is convergent in finite region around \mathbb{Z}_{2N} point \implies Reproduces Appell functions for SU(3) [Klemm, Lerche, Theisen 1995]