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Motivation

• Seiberg-Witten solution for N = 2 super Yang-Mills [Seiberg, Witten 1994]

⋆ on the Coulomb branch via Abelian gauge theory
⋆ provides the exact low energy effective action and BPS spectrum
⋆ dyons become massless at singular points on Coulomb branch

• Softly breaking N = 2 supersymmetry
⋆ exploit the enhanced control provided by the SW solution

• Earlier investigations into softly breaking N = 2
⋆ e.g. → N = 1 exhibits confinement [Seiberg, Witten 1994]

via magnetic monopole condensation
⋆ e.g. other proposals

dilaton spurion [Alvarez-Gaumé, Distler, Kounnas, Marino, 1996]

explicit breaking [Luty, Ratazzi 1999; Edelstein, Fuertes, Mas, Guilarte, 2000]

⋆ embedding adjoint QCD in N = 2 [Cordova, Dumitrescu 2018] (more soon)
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This talk

• Consider N = 2 super-Yang-Mills with gauge group SU(N)
⋆ no SU(N) hypermultiplets
⋆ gauge multiplet (φ, λ1, λ2, vµ) in adjoint rep of SU(N)
⋆ Coulomb branch = VEVs for φ with zero potential and unbroken N = 2

• Add mass term M2 tr(φ†φ) for gauge scalars φ to potential
⋆ softly breaks all supersymmetries
⋆ but preserves all other symmetries and ‘t Hooft anomalies
⋆ φ decouples as M → ∞ to adjoint QCD (λ1, λ2, vµ) with two flavors

• What is the phase structure across the flow 0 < M < ∞ ?
⋆ We will propose and (approximately) solve semi-classically

magnetic dual Abelian Higgs model

⇒ Cascade of phase transitions through partial Coulomb/Higgs phases
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N = 2 super Yang-Mills with gauge group SU(N)

• N = 2 gauge multiplet (φ, λ1, λ2, vµ)

LSU(N) = − 1
2g2

tr(vµνv
µν)− 2

g2
tr(Dµφ†Dµφ)− 1

g2
tr[φ†, φ]2 + fermions

⋆ SU(2)R symmetry of the N = 2 super Poincaré algebra
⋆ U(1)R → Z4N by anomaly and instanton induced ’t Hooft interaction

• Coulomb branch vacua [φ†, φ] = 0 have unbroken N = 2
⋆ at generic point on the Coulomb branch SU(N) −→ U(1)N−1

⋆ low energy : N = 2 gauge U(1)k multiplets for k = 1, · · · , N − 1

decomposed into N = 1 chiral Ak and gauge Vk multiplets

LSW =
Im

4π

N−1
∑

k=1

∫

d4θADkĀk +
Im

8π

n−1
∑

k,ℓ=1

∫

d2θ τkℓ WkWℓ

⋆ fully specified by a locally holomorphic pre-potential F(A1, · · ·AN−1)

ADk =
∂F
∂Ak

τkℓ =
∂2F

∂Ak ∂Aℓ

W
α
k = −1

4D̄D̄D
α
Vk

⋆ subject to Im τ > 0 for positive kinetic term
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The Seiberg-Witten solution

• The Seiberg-Witten solution determines the pre-potential
⋆ F only depends on the fields Ak and not on their derivatives
⋆ It suffices to evaluate F on the vevs 〈Ak〉 = ak and 〈ADk〉 = aDk

• Family of SW curves for SU(N) [Klemm, Lerche, Yankielowicz, Theisen; Argyres, Faraggi 1994]

⋆ parametrized by gauge-invariant moduli un = tr(φn)

y
2
= C(x)

2 − Λ
2N

C(x) = x
N −

N
∑

n=2

unx
N−n

⋆ Hyper-elliptic of genus N − 1: Canonical basis Ak,Bk for k = 1, · · · , N − 1

namely #(Ak,Aℓ) = #(Bk,Bℓ) = 0 and #(Ak,Bℓ) = δkℓ

• Solution given by periods of SW differential λ

ak =

∮

Ak

λ aDk =
∂F
∂ak

=

∮

Bk

λ λ =
xC ′dx
2πi y

⋆ Riemann bilinear relations guarantee Im τ > 0
⋆ Mass of BPS dyon with electric charges qk and magnetic charges mk

MBPS(q;m) =
√
2|Z| Z =

N−1
∑

k=1

(

qkak + mkaDk

)

q,m ∈ Z
N−1
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Special points on the Coulomb branch

• Special points: enhanced symmetry or vanishing masses or both

⋆ a single Z2N symmetric point
– with curve y2 = x2N − Λ2N

– no massless BPS states
=⇒ a convergent Taylor series exists at the Z2N point [ED, Dumitrescu, Nardoni 2022]

⋆ two different ZN symmetric “Argyres-Douglas points”
– with curves y2 = xN(xN ± 2ΛN)
– 1

2N(N − 1) massless dyons that are mutually non-local for N ≥ 3

⋆ N different Z2 symmetric “multi-monopole points”
– mapped into one another by ZN

– with curves y2 = Λ2N sinh2
(

N arccos(x/2N)
)

(Chebyshev polynomials)

– N − 1 massless magnetic monopoles that are mutually local
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Near a multi-monopole point

• Approaching a multi-monopole point [Douglas, Shenker 1995]

⋆ magnetic periods aDk → 0 so that MBPS(0,m) → 0

⋆ electric periods ak 6→ 0 so that MBPS(q, 0) remains finite

ak = −2NΛ

π
sin

kπ

N
− i

2π
aDk ln

aDk

Λ
+O(aD)

• Massless states produce singularities in τ
⋆ expected running of the U(1) gauge couplings

– one-loop exact RG β function

τkℓ = −i δkℓ
2π

ln
aDk

Λ
+O(a0D)

⋆ the Seiberg-Witten low energy effective Lagrangian breaks down
– because it integrated out the light/massless magnetic monopole states

=⇒ viable low energy effective theory obtained by keeping massless states



Eric D’Hoker Cascade flow from N = 2 to adjoint QCD

Effective Abelian Higgs model

• Introduce N − 1 magnetic monopole fields Hk, k = 1, · · · , N − 1

⋆ hyper-multiplets of N = 2 for gauge group U(1)N−1

⋆ with charge vector (0;mk) where (mk)
ℓ = δℓk

Hk = (hik, ψ+k, ψ̄−k) H̄k = (h̄ik, ψ̄+k, ψ−k)

⋆ the index i = 1, 2 labels the doublet representation of SU(2)R
⋆ in terms of N = 1 superfields with auxiliary fields F±

k

H+
k = (h1k, ψ+k, F

+
k ) H−

k = (h̄2k, ψ−k, F
−
k )

• Effective Lagrangian including magnetic monopole hyper-multiplets
⋆ dictated by N = 2 supersymmetry

Leff
SW =

N−1
∑

k=1

[ ∫

d
4
θ
(

H̄+
k e

−2VkH+
k + H̄−

k e
+2VkH−

k +
Im

2π
ĀkADk

)

+2Re

∫

d
2
θADkH+

k H
−
k

]

+

N−1
∑

k,ℓ=1

Im

4π

∫

d
2
θ τ

eff
DkℓWkWℓ

⋆ where Wα
k = −1

4D̄D̄DαVk and Vk are the N = 1 gauge multiplets of U(1)N−1
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Effective periods and gauge couplings

• Retaining magnetic monopole fields changes the periods
⋆ near a multi monopole point we still have aDk → 0
⋆ including the magnetic monopole fields below renormalization scale µ

– removes their contribution from the one-loop exact β-function

aeffk = −2NΛ

π
sin

kπ

N
− i

2π
aDk ln

µ

Λ
+O(aD)

• Gauge couplings τkℓ are now free of singularities as aDk → 0
⋆ we shall need the precise normalizations [ED, Dumitrescu, Gerchkovitz, Nardoni 2020]

τ effkℓ =
i

2π

(

δkℓ ln
Λ

µ
+ lnLkℓ

)

+O(aD)

⋆ where L is given in terms of ck = cos(kπ/N) and sk = sin(kπ/N)

Lkk = 16Ns3k Lkℓ =
1− ck+ℓ

1− ck−ℓ
k 6= ℓ

⋆ order O(aD) corrections to τ are known as well [ED, Phong 1997]
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Soft supersymmetry breaking operator

• Flow from N = 2 to adjoint QCD is controlled by the operator T

T = 2g
−2

tr(φ
†
φ)

⋆ LSU(N) → LSU(N) −M2T breaks susy completely
⋆ but preserves all other symmetries and ‘t Hooft anomalies
⋆ M → ∞ decouples φ leaving adjoint QCD with two Weyl fermions

• IR behavior of T in N = 2 theory governed by SW theory
⋆ T is the lowest component of the N = 2 stress tensor multiplet

– as such its dimension is protected
⋆ flows towards the Kähler potential which, in SW theory, is given by

T → i

4π

N−1
∑

k=1

(

ĀDkAk − ĀkADk

)

⋆ In the effective theory near a multi-monopole point
– with magnetic monopole hyper-multiplet fields integrated in
– T evaluates on the corresponding periods

T → i

4π

N−1
∑

k=1

(

āeff
Dk a

eff
k − āeff

k aeff
Dk

)

− 1
2

∑

k

h̄khk
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The Kähler potential on the Coulomb branch

• M2T will drive vacuum towards minimum of T
⋆ How does the Kähler potential T behave ?
⋆ Clearly T = 0 at multi-monopole points since aDk = 0 for all N

• Hyper-elliptic periods are not standard special functions for N ≥ 3
⋆ Multiple Taylor series expansion at Z2N point, finite radius
⋆ Numerical integration of Kähler potential
⋆ Numerical integration of Picard-Fuchs eqs
⋆ N = 3 curve y2 = (x3 − ux− v)2 − Λ6

=⇒ minimum of T at Z6 point
⋆ N > 3 compelling evidence

=⇒ minimum of T at Z2N point
[ED, Dumitrescu, Nardoni 2022]
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The Abelian Higgs model with susy breaking

• Quadratic approximation for T

T ≈
N−1
∑

k=1

(NΛ

π2
sk Im (aDk) − 1

2h̄khk

)

+
N−1
∑

k,ℓ=1

tkℓ āDk aDℓ tkℓ =
Im τ eff

kℓ

2π

⋆ symmetric matrix t is positive definite with positive entries for µ/Λ ≪ 1
⋆ leads to renormalizable effective theory

• Assembling all the contributions to the Abelian Higgs model
⋆ incorporate susy breaking operator M2T in the quadratic approximation
⋆ retain only the effective potential of the model (to study vacua)

V =

N−1
∑

k=1

(

M2NΛ

π2
skIm (aDk) +

[

2|aDk|2 − 1
2M

2
]

h̄khk

)

+

N−1
∑

k,ℓ=1

(

M
2
tkℓaDkāDℓ + (t

−1
)kℓ

[

(h̄khℓ)(h̄ℓhk) − 1
2(h̄khk)(h̄ℓhℓ)

]

)

• Proposal: Abelian Higgs model is dual to flow from N = 2 to adjoint QCD
⋆ for small M back-reaction of T on flow can be ignored
⋆ for larger M we present evidence in favor of a coherent picture
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Vacuum alignment

• Minima of V occur at Re (aDk) = 0
⋆ preserves a combination of charge conjugation C, time reversal T , and Z4N

aDk = −iMxk k ∈ R

• The Higgs fields hk align perfectly as SU(2)R doublets
⋆ minimize V for given values of h̄khk; orientation dependence:

V
∣

∣

∣

h̄khk

=
∑

k,ℓ

(t−1)kℓ vk · vℓ vk = h̄kσhk hk =

(

h1k
h2k

)

⋆ diagonal contribution k = ℓ is given by fixing h̄khk = v2
k

⋆ ground state is ferromagnetic under the mild assumptions

(t
−1

)kℓ < 0 k 6= ℓ

⋆ found to hold for sufficiently small µ/Λ
⋆ choose direction h1

k = Mhk, h
2
k = 0, hk ∈ R

+

• SU(2)R is spontaneously broken as soon as any hk 6= 0
⋆ producing two Goldstone bosons SU(2)R → U(1)R i.e. CP1-phase
⋆ matches expected chiral symmetry breaking in adjoint QCD 〈λiλj〉 6= 0
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Simplified Abelian Higgs model

• Vacuum alignment greatly simplifies the analysis of the potential
{

aDk = −iM xk

hi
k = Mδi1 hk

κ =
NΛ

π2M

⋆ in terms of these dimensionless real variables

V
M4

=

N−1
∑

k=1

(

1
2(4x

2
k − 1)h

2
k − κskxk

)

+

N−1
∑

k,ℓ=1

(

tkℓxkxℓ +
1
2(t

−1
)kℓh

2
kh

2
ℓ

)

• Reduced field equations for space-time independent VEVs xk, hk

2h2kxk +
N−1
∑

ℓ=1

tkℓ xℓ = κsk hk

(

4x2k − 1 + 2
N−1
∑

ℓ=1

(t−1)kℓh
2
ℓ

)

= 0

• Potential V and field eqs are invariant under charge conjugation C
{

sk = sN−k

tk,ℓ = tN−k,N−ℓ

{

xk → xN−k

hk → hN−k



Eric D’Hoker Cascade flow from N = 2 to adjoint QCD

Organization of semi-classical analysis

• Steps in semi-classical analysis
⋆ Existence of solutions for given N, κ
⋆ Local stability of solutions: positive Hessian on the solution
⋆ Global stability of solutions: global minimum of V for given N, κ

• Solutions to Higgs eqs organized by partitions A|B
k ∈ A hk = 0

k ∈ B 4x2
k − 1 + 2

N−1
∑

ℓ=1

(t−1)kℓh
2
ℓ = 0

⋆ Clearly A ∪ B = {1, · · · , N − 1} and A ∩ B = ∅
⋆ Partitions are ordered: A|B 6= B|A

• In a given partition A|B, solve for hk, k ∈ B in terms of x
⋆ define the submatrix u of dimension #(B) by

(t
−1

)kℓ = (u
−1

)kℓ for k, ℓ ∈ B

⋆ The matrix u is positive, with positive definite entries, just as t is

2h2k =
∑

ℓ∈B

ukℓ(1− 4x2ℓ) k ∈ B
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Reduced field equations and potential

• Eliminate hℓ for ℓ ∈ B; solve for xk with k ∈ A in terms of xm, m ∈ B
⋆ First solve the equations for xℓ with ℓ ∈ B

ℓ ∈ B xℓ +
∑

m,n∈B

(u−1)ℓmxmumn(1 − 4x2
n) = κ(t−1s)ℓ

⋆ Then solve for xk with k ∈ A, using the matrix σ =
(

t
∣

∣

A

)−1

k ∈ A xk =
∑

m∈A

σkm

(

κsm −
∑

n∈B

tmnxn

)

• The reduced potential may be expressed in terms of xℓ, ℓ ∈ B

Vred = V0 +
∑

k,ℓ∈B

ukℓ

[

(xk − κ(t−1sk)(xℓ − κ(t−1sℓ) − 1
8(1 − 4x2

k)(1 − 4x2
k)
]

⋆ where V0 is the potential for the partition B = ∅

V0 = −κ2
N−1
∑

k,ℓ=1

(t−1)kℓsksℓ

⋆ Partition B = ∅ and potential V0 correspond to the “Coulomb branch”

• The Hessian may be similarly reduced to investigate local stability
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Large κ and small κ

• Coulomb branch for sufficiently large κ (i.e. small M)

⋆ Coulomb branch has B = ∅, namely all Higgs hk vanishing
⋆ locally stable when 2(t−1s)k < 1 for all k = {1, · · · , N − 1}
⋆ Charge conjugation invariant√

Small perturbation of N = 2 theory stays in the Coulomb branch

• Maximal Higgs branch for sufficiently small κ (i.e. large M)

⋆ Maximal Higgs branch has A = ∅, namely all Higgs hk non-vanishing
⋆ locally stable for sufficiently small κ
⋆ Charge conjugation invariant√

Magnetic monopole condensation implies confinement in adjoint QCD√
Chiral SU(2)R symmetry of adjoint QCD is spontaneously broken to

• Existence follows from ℓ ∈ B-equations for arbitrary partition

xℓ +
∑

m,n∈B

(u−1)ℓmxmumn(1 − 4x2
n) = κ(t−1s)ℓ

⋆ κ→ ∞ requires xm → ∞ which would violate h2
ℓ > 0

⋆ κ→ 0 requires xm → 0 which forces h2
ℓ 6= 0 for all ℓ ∈ {1, · · · , N − 1}
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Gauge group SU(2)

• Only two possible branches [Cordova, Dumitrescu 2018]

⋆ Coulomb h1 = 0 implies x1 = κ/t11; potential Vred = V0

⋆ Higgs h1 6= 0 implies 2x1 − 4x3
1 = κ/t11

– potential Vred = V0 − 1
8t11(1 − 8x2

1)(1 − 4x2
1)

2

x1

κ/t11

κTP/t11

Higgs branch solution

Coulomb branch solution

Transition point

full lines: locally stable

dotted lines: locally unstable

xCB = 1
2

xHB = 1√
6

xTP = 1√
8

x12x1 − 4x31
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Gauge group SU(3)

• Three possible C-inequivalent branches
⋆ Coulomb branch hk = 0 implies xk = κ(t−1)k for k = 1, 2
⋆ Mixed branch h1 6= 0, h2 = 0 (and its image under C: h2 6= 0, h1 = 0)

⋆ Maximal Higgs branch hk 6= 0 for k = 1, 2

• Immediate consequences of existence, local and global stability
⋆ Maximal Higgs subbranch h1, h2 6= 0, h2 6= h1 is locally unstable
⋆ Maximal Higgs subbranch h1 = h2 6= 0 is locally stable, when it exists
⋆ Mixed branch h1 6= 0, h2 = 0 has higher potential than h1 = h2 6= 0

• Phase diagram = SU(2) with adapted parameters for x = x1 = x2

x

κ/(t11 + t12)

κTP/(t11 + t12)

Maximal Higgs branch solution

Coulomb branch solution

Transition point
2x − 4x3
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Gauge group SU(4)

• Possible C-inequivalent branches
⋆ Coulomb branch hk = 0 for k = 1, 2, 3

⋆ Single Higgs branch h1 6= 0, h2, h3 = 0

⋆ Single Higgs branch h2 6= 0, h1, h3 = 0

⋆ Double Higgs branch h1, h2 6= 0, h3 = 0

⋆ Double Higgs branch h1, h3 6= 0, h2 = 0

⋆ Maximal Higgs branch h1, h2, h3 6= 0

Vred − V0

κ

⋆ All solutions in double Higgs branch

have h1 = h3 6= 0, h2 = 0
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Cascade flow for arbitrary gauge group SU(N)

• For larger values of N the numerics is underway, e.g. for SU(7) etc
⋆ Evidence for phases intermediate between Coulomb and Maximal Higgs
⋆ Make µ/Λ ≪ 1 so that diagonal of matrix t dominates
=⇒ Pairs hn = hN−n decouple from one another: N − 1 copies of SU(2) case

– transition point governed by κ(t−1s)n crossing 3/4
√
2

x

κ(t−1s)n

n = 1
n = 2
· · ·

· · ·
· · ·
· · ·
· · ·

Transition point

Coulomb branch

Higgs branch

3
4
√
2

xCBxHBxTP

x

2x − 4x3
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Summary and Outlook

• Proposal for Abelian Higgs model dual to flow from N = 2 to adjoint QCD
⋆ Magnetic monopole fields have been “integrated in”
⋆ Soft susy breaking operator flows to Kähler potential of SW theory
⋆ Unique minimum of Kähler potential allows for quadratic approximation

• Semi-classical Abelian Higgs model matches SU(N) theory
⋆ For small susy breaking mass M , stay in Coulomb branch
⋆ For increasing M , spontaneous breaking of SU(2)R

– matches chiral symmetry breaking in adjoint QCD
⋆ Vacuum alignment guarantees only two Goldstone bosons CP1 phase
⋆ For large M , Abelian Higgs model predicts monopole condensation

– matches confinement in adjoint QCD

• Semi-classical analysis of Abelian Higgs model predicts
⋆ Intermediate phases between Coulomb and Maximal Higgs phases
⋆ Approximations predict a cascade of phases

– in which pairs of C-conjugate Higgs successively acquire VEVs

• Solidify semi-classical calculations
⋆ consider additional tests on validity of dual picture
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Thank you
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Expansion around the Z2N point

• At the Z2N point, the curve is y2 = x2N − Λ2N

⋆ Branch points at 2N -th roots of unity, generated by ε = e2πi/2N

• ••

••

••

0 ε0

ε1ε2

ε3

ε4 ε5

Â1Â2

Â3

B1

B2 B3

• Recall the general curve
⋆ for arbitrary moduli un of the Coulomb branch

y
2
= C(x)

2 − Λ
2N

C(x) = x
N −

N
∑

n=2

un x
N−2
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Expansion around the Z2N point (cont’d)

⋆ The periods ak, aDk are expressed as follows

aI =
I

∑

J=1

{

Q(ε2J−1) − Q(ε2J−2)
}

aDI = Q(ε2I) − Q(ε2I−1)

⋆ Q(ξ) is a function on the 2N -th roots of unity ξ (i.e. ξ2N = 1)

πiQ(ξ) =

∫ ξ

0

λ

⋆ The function Q(ξ) has the following series expansion around un = 0

Q(ξ) =

∞
∑

{ℓn}=0
n=0,...,N−2

VL,M(ξ)
u
ℓ0
0 · · ·uℓN−2

N−2

ℓ0! · · · ℓN−2!
L =

N−2
∑

j=0

jℓj M =

N−2
∑

j=0

ℓj

⋆ where the coefficients VL,M(ξ) are given by

VL,M(ξ) =
2M−(L+1)/N

2N
ξ
NM+L+N+1 Γ(L+1

N )

Γ(2N+1+L−MN
2N )2

⋆ Series is convergent in finite region around Z2N point
=⇒ Reproduces Appell functions for SU(3) [Klemm, Lerche, Theisen 1995]


