Cascade flow from $\mathcal{N} = 2$ to adjoint QCD

Eric D'Hoker

Mani L. Bhaumik Institute for Theoretical Physics, UCLA

Professor Norisuke Sakai Memorial Symposium

Supersymmetry, Solitons, and Resurgence

5 August 2023

PHYSICAL REVIEW D

VOLUME 54, NUMBER 12

15 DECEMBER 1996

Gauge symmetry breaking through soft masses in supersymmetric gauge theories

Eric D'Hoker*

Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, California 90024

Yukihiro Mimura[†] and Norisuke Sakai[‡] Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152, Japan (Received 1 April 1996)

We analyze the effects of soft supersymmetry-breaking terms on N=1 supersymmetric QCD with N_f flavors and color gauge group SU(N_c). The mass squared of some squarks may be negative, as long as vacuum stability is ensured by a simple mass inequality. For $N_f < N_c$, we include the dynamics of the nonperturbative superpotential and use the original (s)quark and gauge fields while, for $N_f > N_c + 1$, we formulate the dynamics in terms of dual (s)quarks and a dual gauge group SU($N_f - N_c$). The presence of negative squark mass-squared terms leads to spontaneous breakdown of flavor and color symmetry. We determine this breaking pattern, derive the spectrum, and argue that the masses vary smoothly as one crosses from the Higgs phase into the confining phase. [S0556-2821(96)03824-6]

Motivation

- Seiberg-Witten solution for $\mathcal{N} = 2$ super Yang-Mills
 - * provides exact low energy effective action and BPS spectrum
 * dyons become massless at singular points on Coulomb branch
- Softly breaking $\mathcal{N} = 2$ supersymmetry
 - \star exploit the enhanced control provided by the SW solution

• Earlier investigations into softly breaking $\mathcal{N}=2$

- * confinement via magnetic monopole condensation [Seiberg, Witten 1994]
- * also [Alvarez-Gaumé, Distler, Kounnas, Marino, 1996; Luty, Ratazzi 1999; Edelstein, Fuertes, Mas, Guilarte, 2000]
- \star embedding SU(2) adjoint QCD into $\mathcal{N}=2$ [Cordova, Dumitrescu 2018]

This talk

• $\mathcal{N} = 2$ super-Yang-Mills with gauge group SU(N)

 \star gauge multiplet $(\phi,\lambda^1,\lambda^2,v_\mu)$ in adjoint rep of SU(N) \star no SU(N) hypermultiplets

- Add mass term $M^2 tr(\phi^{\dagger}\phi)$ for gauge scalars ϕ
 - * softly breaks all supersymmetries
 - * but preserves all other symmetries and 't Hooft anomalies
 - $\star \phi$ decouples as $M \to \infty$ to adjoint QCD $(\lambda^1, \lambda^2, v_\mu)$ with two flavors
- Phase structure along the flow $0 < M < \infty$?
- Proposal: a magnetic dual Abelian Higgs model

 \Rightarrow Cascade of phase transitions through partial Coulomb/Higgs phases

with Thomas Dumitrescu, Efrat Gerchkovitz and Emily Nardoni 2012.11843; 2208.11502; 23XX.XXXX

$\mathcal{N}=2$ super Yang-Mills with gauge group SU(N)

• Coulomb branch vacua $[\phi^{\dagger},\phi]=0$ have unbroken $\mathcal{N}=2$

 \star at generic point on the Coulomb branch

$$SU(N) \longrightarrow U(1)^{N-1}$$

 $\star U(1)_R \to \mathbb{Z}_{4N}$ by ABJ anomaly

• Low energy $\mathcal{N} = 2$ gauge $U(1)_k$ multiplets for $k = 1, \dots, N-1$ \star in terms of $\mathcal{N} = 1$ chiral A_k and gauge V_k superfields

$$\mathcal{L}_{\mathsf{SW}} = \frac{\mathrm{Im}}{4\pi} \sum_{k=1}^{N-1} \int d^4\theta A_{Dk} \bar{A}_k + \frac{\mathrm{Im}}{8\pi} \sum_{k,\ell=1}^{n-1} \int d^2\theta \,\tau_{k\ell} \,W_k W_\ell$$

 \star specified by a locally holomorphic pre-potential $\mathcal{F}(A_1, \cdots, A_{N-1})$

$$A_{Dk} = \frac{\partial \mathcal{F}}{\partial A_k} \qquad \qquad \tau_{k\ell} = \frac{\partial^2 \mathcal{F}}{\partial A_k \partial A_\ell} \qquad \qquad W_k^{\alpha} = -\frac{1}{4} \bar{D} \bar{D} D^{\alpha} V_k$$

 \star subject to Im au > 0 for positive kinetic term of $U(1)_k$ gauge fields

The Seiberg-Witten solution

- The Seiberg-Witten solution determines the pre-potential $\star \mathcal{F}$ as a function of the vevs $\langle A_k \rangle = a_k$ and $\langle A_{Dk} \rangle = a_{Dk}$
- SW curves for SU(N) [Klemm, Lerche, Yankielowicz, Theisen; Argyres, Faraggi 1994] \star parametrized by gauge-invariant moduli $u_n = \operatorname{tr}(\phi^n)$ for $n = 2, \dots N$

$$y^{2} = C(x)^{2} - \Lambda^{2N}$$
 $C(x) = x^{N} - \sum_{n=2}^{N} u_{n} x^{N-n}$

 \star hyper-elliptic of genus N-1

- Solution given by periods of SW differential
 - * Canonical homology basis $\mathfrak{A}_k, \mathfrak{B}_k$ for $k = 1, \cdots, N-1$

$$a_k = \oint_{\mathfrak{A}_k} \frac{xC'dx}{2\pi i \, y} \qquad a_{Dk} = \oint_{\mathfrak{B}_k} \frac{xC'dx}{2\pi i \, y}$$

 \star Mass of BPS dyon with electric/magnetic charges $\mathbf{q}, \mathbf{m} \in \mathbb{Z}^{N-1}$

$$M_{\mathsf{BPS}}(\mathbf{q};\mathbf{m}) = \sqrt{2}|Z| \qquad \qquad Z = \sum_{k=1}^{N-1} \left(q_k a_k + m_k a_{Dk}\right)$$

Special points on the Coulomb branch

• Special points: enhanced symmetry and/or vanishing masses

- \star a single \mathbb{Z}_{2N} symmetric point
 - with curve $y^2 = x^{2N} \Lambda^{2N}$
 - no massless BPS states

 \implies a convergent Taylor series exists at the \mathbb{Z}_{2N} point [ED, Dumitrescu, Nardoni 2022]

 \star two different \mathbb{Z}_N symmetric "Argyres-Douglas points" ~ for $N\geq 3$

– with curves
$$y^2 = x^N (x^N \pm 2 \Lambda^N)$$

- $-\frac{1}{2}N(N-1)$ massless dyons that are mutually non-local
- $\star N$ different \mathbb{Z}_2 symmetric "multi-monopole points"
 - mapped into one another by \mathbb{Z}_N
 - with curves $y^2 = \Lambda^{2N} \sinh^2 \left(N \arccos(x/2N) \right)$ (Chebyshev polynomials)
 - -N-1 massless magnetic monopoles that are *mutually local*

Near a multi-monopole point

- Approaching a multi-monopole point [Douglas, Shenker 1995]
 - * magnetic periods $a_{Dk} \rightarrow 0$ so that $M_{\text{BPS}}(\mathbf{0}, \mathbf{m}) \rightarrow 0$
 - \star electric periods $a_k \not\rightarrow 0$ so that $M_{\text{BPS}}(\mathbf{q}, \mathbf{0})$ remains finite
- \bullet Massless states produce singularities in τ

$$\tau_{k\ell} = -\frac{i\,\delta_{k\ell}}{2\pi}\ln\frac{a_{Dk}}{\Lambda} + \mathcal{O}(a_D^0)$$

- the SW low energy effective Lagrangian breaks down because it integrated out light magnetic monopoles
- Viable low energy effective theory requires keeping massless states

Effective Abelian Higgs model

• Introduce N-1 magnetic monopole fields

* hyper-multiplets \mathcal{H}_k for gauge group $U(1)_k$ for $k = 1, \cdots, N-1$ * in terms of $\mathcal{N} = 1$ superfields with auxiliary fields F_k^{\pm}

$$\mathcal{H}_{k}^{+} = (h_{1k}, \psi_{+k}, F_{k}^{+}) \qquad \qquad \mathcal{H}_{k}^{-} = (\bar{h}_{k}^{2}, \psi_{-k}, F_{k}^{-})$$

- Effective Lagrangian including magnetic monopole fields
 - \star dictated by $\mathcal{N}=2$ supersymmetry

$$\mathcal{L}_{\mathsf{SW}}^{\text{eff}} = \sum_{k=1}^{N-1} \left[\int d^4\theta \left(\bar{\mathcal{H}}_k^+ e^{-2V_k} \mathcal{H}_k^+ + \bar{\mathcal{H}}_k^- e^{+2V_k} \mathcal{H}_k^- + \frac{\text{Im}}{2\pi} \bar{A}_k A_{Dk} \right) \right. \\ \left. + 2\text{Re} \, \int d^2\theta A_{Dk} \mathcal{H}_k^+ \mathcal{H}_k^- \right] + \sum_{k,\ell=1}^{N-1} \frac{\text{Im}}{4\pi} \int d^2\theta \, \tau_{Dk\ell}^{\text{eff}} W_k W_\ell$$

 $\star V_k$ and $W_k^{lpha} = -rac{1}{4} ar{D} ar{D} D^{lpha} V_k$ is the $\mathcal{N} = 1$ gauge field of $U(1)_k$

Effective periods and gauge couplings

• Retaining magnetic monopole fields changes the RG flow

- \star near a multi monopole point we still have $a_{Dk} \rightarrow 0$
- \star introducing the magnetic monopole fields below RG scale μ removes their contribution from the β -function
- Gauge couplings $au_{k\ell}$ are now free of singularities as $a_{Dk}
 ightarrow 0$

* precise normalizations [ED, Dumitrescu, Gerchkovitz, Nardoni 2020]

$$\tau_{k\ell}^{\text{eff}} = \frac{i}{2\pi} \left(\delta_{k\ell} \ln \frac{\Lambda}{\mu} + \ln L_{k\ell} \right) + \mathcal{O}(a_D)$$

 \star where L is given in terms of $c_k = \cos(k\pi/N)$ and $s_k = \sin(k\pi/N)$

$$L_{kk} = 16Ns_k^3 \qquad L_{k\ell} = \frac{1 - c_{k+\ell}}{1 - c_{k-\ell}} \qquad k \neq \ell$$

 \star order $\mathcal{O}(a_D)$ corrections to au are known as well [ED, Phong 1997]

Soft supersymmetry breaking operator

• Flow from $\mathcal{N}=2$ to adjoint QCD is controlled by operator \mathcal{T}

 $\mathcal{T} = 2g^{-2}\operatorname{tr}(\phi^{\dagger}\phi)$

 $\star \mathcal{L}_{SU(N)}
ightarrow \mathcal{L}_{SU(N)} - M^2 \mathcal{T}$ breaks susy completely

- IR behavior of \mathcal{T} in $\mathcal{N}=2$ theory governed by SW theory
 - $\star \mathcal{T}$ is the lowest component of the $\mathcal{N}=2$ stress tensor multiplet as such its dimension is protected
 - \star in SW theory, flows towards the Kähler potential is given by

$$\mathcal{T} \to rac{i}{4\pi} \sum_{k=1}^{N-1} \left(\bar{a}_{Dk} a_k - \bar{a}_k a_{Dk} \right)$$

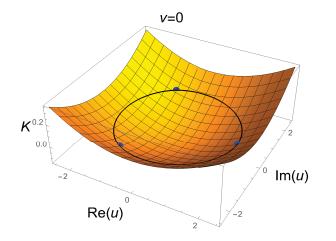
 \star with magnetic monopole hyper-multiplet fields integrated in

$$\mathcal{T} \to \frac{i}{4\pi} \sum_{k=1}^{N-1} \left(\bar{a}_{Dk}^{\text{eff}} a_k^{\text{eff}} - \bar{a}_k^{\text{eff}} a_{Dk}^{\text{eff}} \right) - \frac{1}{2} \sum_k \bar{h}_k h_k$$

The Kähler potential on the Coulomb branch

• $M^2 \mathcal{T}$ will drive vacuum towards minimum of \mathcal{T}

 \star at the \mathbb{Z}_{2N} symmetric point [ED, Dumitrescu, Nardoni 2022] \star for example for SU(3) with $u = u_2$ and $v = u_3$



 \bullet Quadratic approximation for ${\cal T}$

$$\mathcal{T} \approx \sum_{k=1}^{N-1} \left(\frac{N\Lambda}{\pi^2} s_k \operatorname{Im} \left(a_{Dk} \right) - \frac{1}{2} \bar{h}_k h_k \right) + \sum_{k,\ell=1}^{N-1} t_{k\ell} \, \bar{a}_{Dk} \, a_{D\ell} \\ \star \text{ matrix } t \sim \operatorname{Im} \tau^{\text{eff}} \text{ is positive definite for } \mu/\Lambda \ll 1$$

The Abelian Higgs model with susy breaking

• Assembling all the contributions into the Abelian Higgs model

* incorporate susy breaking operator $M^2 \mathcal{T}$ in the quadratic approximation * retain only the effective potential of the model (to study vacua)

$$\mathcal{V} = \sum_{k=1}^{N-1} \left(\frac{M^2 N \Lambda}{\pi^2} s_k \text{Im} (a_{Dk}) + \left[2|a_{Dk}|^2 - \frac{1}{2}M^2 \right] \bar{h}_k h_k \right) \\ + \sum_{k,\ell=1}^{N-1} \left(M^2 t_{k\ell} a_{Dk} \bar{a}_{D\ell} + (t^{-1})_{k\ell} \left[(\bar{h}_k h_\ell) (\bar{h}_\ell h_k) - \frac{1}{2} (\bar{h}_k h_k) (\bar{h}_\ell h_\ell) \right] \right)$$

Proposal: Abelian Higgs model is dual to flow from N = 2 to adjoint QCD
 * for small M back-reaction of T on flow can be ignored
 * for larger M we present evidence in favor of a coherent picture

Vacuum alignment

- Minima of \mathcal{V} occur at $\operatorname{Re}(a_{Dk}) = 0$
- The Higgs fields h_k align perfectly as $SU(2)_R$ doublets \star minimize \mathcal{V} for given values of $h_k^{\dagger}h_k$;

$$\mathcal{V}\Big|_{\bar{h}_k h_k} = \sum_{k,\ell} (t^{-1})_{k\ell} \mathbf{v}_k \cdot \mathbf{v}_\ell \qquad \mathbf{v}_k = h_k^{\dagger} \boldsymbol{\sigma} h_k \qquad h_k = \begin{pmatrix} h_k^1 \\ h_k^2 \end{pmatrix}$$

* ground state is ferromagnetic under the mild assumption

$$(t^{-1})_{k\ell} < 0 \qquad \qquad k \neq \ell$$

 \star holds for sufficiently small μ/Λ

- $SU(2)_R$ is spontaneously broken as soon as any $h_k \neq 0$
 - * producing two Goldstone bosons $SU(2)_R \rightarrow U(1)_R$ i.e. CP^1 -phase
 - \star matches expected chiral symmetry breaking in adjoint QCD $\langle \lambda^i \lambda^j \rangle \neq 0$

Simplified Abelian Higgs model

• Vacuum alignment greatly simplifies the analysis of the potential

$$\begin{cases} a_{Dk} = -iM x_k \\ h_k^i = M\delta_1^i h_k \end{cases} \qquad \qquad \kappa = \frac{N\Lambda}{\pi^2 M} \end{cases}$$

 \star in terms of these dimensionless real variables

$$\frac{\mathcal{V}}{M^4} = \sum_{k=1}^{N-1} \left(\frac{1}{2} (4x_k^2 - 1)h_k^2 - \kappa s_k x_k \right) + \sum_{k,\ell=1}^{N-1} \left(t_{k\ell} x_k x_\ell + \frac{1}{2} (t^{-1})_{k\ell} h_k^2 h_\ell^2 \right)$$

• Reduced field equations for space-time independent VEVs x_k, h_k

$$\kappa s_{k} = 2h_{k}^{2}x_{k} + \sum_{\ell=1}^{N-1} t_{k\ell} x_{\ell}$$

$$0 = h_{k} \left(4x_{k}^{2} - 1 + 2\sum_{\ell=1}^{N-1} (t^{-1})_{k\ell} h_{\ell}^{2} \right) \qquad (1)$$

Organization of semi-classical analysis

- Steps in semi-classical analysis
 - \star Existence of solutions for given N,κ
 - * Local stability of solutions: positive Hessian on the solution
 - \star Global stability of solutions: global minimum of ${\mathcal V}$ for given N,κ
- Solutions to Higgs eqs organized by partitions A|B

$$k \in A$$
 $h_k = 0$
 $k \in B$ $4x_k^2 - 1 + 2\sum_{\ell=1}^{N-1} (t^{-1})_{k\ell} h_\ell^2 = 0$

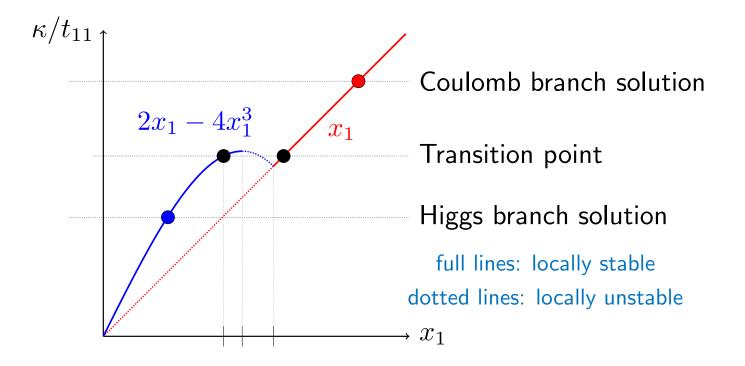
* Clearly $A \cup B = \{1, \cdots, N-1\}$ and $A \cap B = \emptyset$

• In a given partition A|B solve for h_k with $k \in B$ in terms of x \star resulting in |B| coupled cubics in x_k for $k \in B$

Gauge group SU(2)

- Two possible branches [Cordova, Dumitrescu 2018]
 - \star Coulomb $h_1 = 0$ implies $x_1 = \kappa/t_{11}$; potential $\mathcal{V}_{red} = \mathcal{V}_0$
 - * Higgs $h_1 \neq 0$ implies $2x_1 4x_1^3 = \kappa/t_{11}$

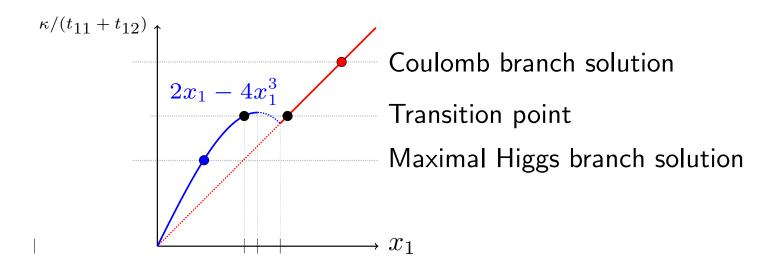
$$\mathcal{V}_{\rm red} = \mathcal{V}_0 - \frac{1}{8}t_{11}(1 - 8x_1^2)(1 - 4x_1^2)^2$$



Gauge group SU(3)

• Three possible branches

- * Coulomb branch $h_k = 0$ implies $x_k = \kappa(t^{-1})_k$ for k = 1, 2
- * Maximal Higgs branch $h_k \neq 0$ for k = 1, 2
 - local stability requires $h_1 = h_2$ when it exists
- * Mixed branch $h_1 \neq 0, h_2 = 0$ (or $h_2 \neq 0, h_1 = 0$)
 - has higher potential than $h_1 = h_2$
- phase diagram of SU(2) with $h_1 = h_2$ and $x_1 = x_2$



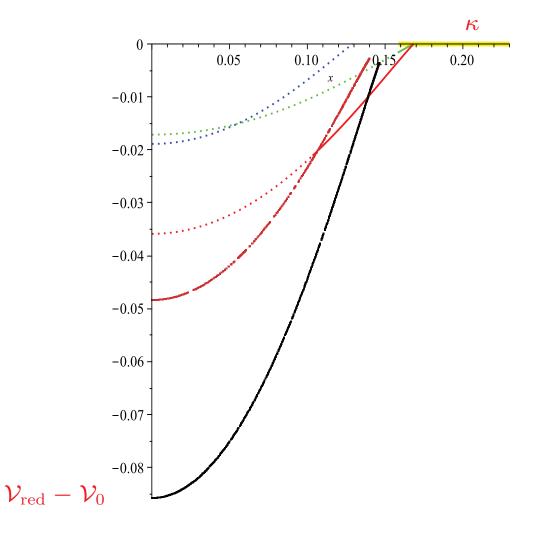
Gauge group SU(4)

• Possible *C*-inequivalent branches

- \star Coulomb $h_k = 0$ for k = 1, 2, 3
- * Single Higgs $h_1 \neq 0, h_2, h_3 = 0$
- * Single Higgs $h_2 \neq 0, h_1, h_3 = 0$
- * Double Higgs $h_1, h_2 \neq 0, h_3 = 0$
- * Double Higgs $h_1, h_3 \neq 0, h_2 = 0$
- * Maximal Higgs $h_1, h_2, h_3 \neq 0$

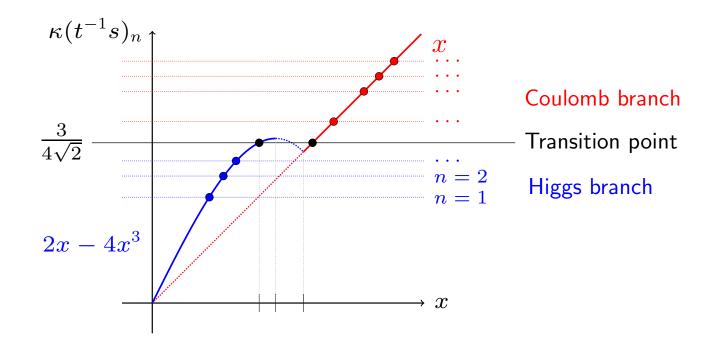
 \star All solutions in double Higgs branch

have $h_1 = h_3 \neq 0, \ h_2 = 0$



Cascade flow for arbitrary gauge group SU(N)

- For larger values of N more mixed phases are stable
- Expansion in $(\ln \mu / \Lambda)^{-1}$ makes diagonal of matrix t dominate \star Pairs $h_n = h_{N-n}$ decouple from one another \star reduce to N - 1 copies of SU(2) case + perturbations
- Confirmed by numerical studies of coupled cubics



Summary

- Magnetic Abelian Higgs model dual for flow from $\mathcal{N} = 2$ to adjoint QCD
 - * Magnetic monopole fields have been "integrated in"
 - * Soft susy breaking operator flows to Kähler potential of SW theory

• Semi-classical Abelian Higgs model matches SU(N) theory

- \star For small susy breaking mass M stay in Coulomb branch
- \star For increasing M, spontaneous breaking of $SU(2)_R$
 - matches chiral symmetry breaking in adjoint QCD
- \star Vacuum alignment guarantees only two Goldstone bosons CP¹ phase
- \star For large M, Abelian Higgs model predicts monopole condensation
 - matches confinement in adjoint QCD
- Semi-classical analysis of Abelian Higgs model predicts
 - * Intermediate phases between Coulomb and Maximal Higgs phases
 - * Approximations predict a cascade of phases
 - in which more Higgs successively acquire VEVs

Dedicated to the memory of friend and collaborator Professor Norisuke Sakai



Mount Elbert (4401 m) and Mount Massive (4398 m), Colorado