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Motivation

• Seiberg-Witten solution for N = 2 super Yang-Mills
⋆ provides exact low energy effective action and BPS spectrum
⋆ dyons become massless at singular points on Coulomb branch

• Softly breaking N = 2 supersymmetry
⋆ exploit the enhanced control provided by the SW solution

• Earlier investigations into softly breaking N = 2
⋆ confinement via magnetic monopole condensation [Seiberg, Witten 1994]

⋆ also [Alvarez-Gaumé, Distler, Kounnas, Marino, 1996; Luty, Ratazzi 1999; Edelstein, Fuertes, Mas, Guilarte, 2000]

⋆ embedding SU(2) adjoint QCD into N = 2 [Cordova, Dumitrescu 2018]
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This talk

• N = 2 super-Yang-Mills with gauge group SU(N)
⋆ gauge multiplet (φ, λ1, λ2, vµ) in adjoint rep of SU(N)
⋆ no SU(N) hypermultiplets

• Add mass term M2 tr(φ†φ) for gauge scalars φ

⋆ softly breaks all supersymmetries
⋆ but preserves all other symmetries and ‘t Hooft anomalies
⋆ φ decouples as M → ∞ to adjoint QCD (λ1, λ2, vµ) with two flavors

• Phase structure along the flow 0 < M < ∞ ?

• Proposal: a magnetic dual Abelian Higgs model

⇒ Cascade of phase transitions through partial Coulomb/Higgs phases

with Thomas Dumitrescu, Efrat Gerchkovitz and Emily Nardoni
2012.11843; 2208.11502; 23XX.XXXXX
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N = 2 super Yang-Mills with gauge group SU(N)

• Coulomb branch vacua [φ†, φ] = 0 have unbroken N = 2
⋆ at generic point on the Coulomb branch

SU(N) −→ U(1)N−1

⋆ U(1)R → Z4N by ABJ anomaly

• Low energy N = 2 gauge U(1)k multiplets for k = 1, · · · , N − 1

⋆ in terms of N = 1 chiral Ak and gauge Vk superfields

LSW =
Im

4π

N−1
∑

k=1

∫

d4θADkĀk +
Im

8π

n−1
∑

k,ℓ=1

∫

d2θ τkℓWkWℓ

⋆ specified by a locally holomorphic pre-potential F(A1, · · · , AN−1)

ADk =
∂F
∂Ak

τkℓ =
∂2F

∂Ak ∂Aℓ
Wα

k = −1
4D̄D̄D

αVk

⋆ subject to Im τ > 0 for positive kinetic term of U(1)k gauge fields
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The Seiberg-Witten solution

• The Seiberg-Witten solution determines the pre-potential
⋆ F as a function of the vevs 〈Ak〉 = ak and 〈ADk〉 = aDk

• SW curves for SU(N) [Klemm, Lerche, Yankielowicz, Theisen; Argyres, Faraggi 1994]

⋆ parametrized by gauge-invariant moduli un = tr(φn) for n = 2, · · ·N

y2 = C(x)2 − Λ2N C(x) = xN −
N
∑

n=2

unx
N−n

⋆ hyper-elliptic of genus N − 1

• Solution given by periods of SW differential
⋆ Canonical homology basis Ak,Bk for k = 1, · · · , N − 1

ak =

∮

Ak

xC ′dx
2πi y

aDk =

∮

Bk

xC ′dx
2πi y

⋆ Mass of BPS dyon with electric/magnetic charges q,m ∈ Z
N−1

MBPS(q;m) =
√
2|Z| Z =

N−1
∑

k=1

(

qkak +mkaDk

)
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Special points on the Coulomb branch

• Special points: enhanced symmetry and/or vanishing masses

⋆ a single Z2N symmetric point
– with curve y2 = x2N − Λ2N

– no massless BPS states
=⇒ a convergent Taylor series exists at the Z2N point [ED, Dumitrescu, Nardoni 2022]

⋆ two different ZN symmetric “Argyres-Douglas points” for N ≥ 3

– with curves y2 = xN(xN ± 2ΛN)
– 1

2N(N − 1) massless dyons that are mutually non-local

⋆ N different Z2 symmetric “multi-monopole points”
– mapped into one another by ZN

– with curves y2 = Λ2N sinh2
(

N arccos(x/2N)
)

(Chebyshev polynomials)

– N − 1 massless magnetic monopoles that are mutually local
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Near a multi-monopole point

• Approaching a multi-monopole point [Douglas, Shenker 1995]

⋆ magnetic periods aDk → 0 so that MBPS(0,m) → 0

⋆ electric periods ak 6→ 0 so that MBPS(q, 0) remains finite

• Massless states produce singularities in τ

τkℓ = −i δkℓ
2π

ln
aDk

Λ
+O(a0D)

⋆ the SW low energy effective Lagrangian breaks down
because it integrated out light magnetic monopoles

• Viable low energy effective theory requires keeping massless states
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Effective Abelian Higgs model

• Introduce N − 1 magnetic monopole fields
⋆ hyper-multiplets Hk for gauge group U(1)k for k = 1, · · · , N − 1

⋆ in terms of N = 1 superfields with auxiliary fields F±
k

H+
k = (h1k, ψ+k, F

+
k ) H−

k = (h̄2k, ψ−k, F
−
k )

• Effective Lagrangian including magnetic monopole fields
⋆ dictated by N = 2 supersymmetry

Leff
SW =

N−1
∑

k=1

[ ∫

d4θ
(

H̄+
k e

−2VkH+
k + H̄−

k e
+2VkH−

k +
Im

2π
ĀkADk

)

+2Re

∫

d
2
θADkH+

k H
−
k

]

+
N−1
∑

k,ℓ=1

Im

4π

∫

d
2
θ τ

eff
DkℓWkWℓ

⋆ Vk and Wα
k = −1

4D̄D̄DαVk is the N = 1 gauge field of U(1)k
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Effective periods and gauge couplings

• Retaining magnetic monopole fields changes the RG flow
⋆ near a multi monopole point we still have aDk → 0
⋆ introducing the magnetic monopole fields below RG scale µ

removes their contribution from the β-function

• Gauge couplings τkℓ are now free of singularities as aDk → 0
⋆ precise normalizations [ED, Dumitrescu, Gerchkovitz, Nardoni 2020]

τ effkℓ =
i

2π

(

δkℓ ln
Λ

µ
+ lnLkℓ

)

+O(aD)

⋆ where L is given in terms of ck = cos(kπ/N) and sk = sin(kπ/N)

Lkk = 16Ns3k Lkℓ =
1− ck+ℓ

1− ck−ℓ
k 6= ℓ

⋆ order O(aD) corrections to τ are known as well [ED, Phong 1997]
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Soft supersymmetry breaking operator

• Flow from N = 2 to adjoint QCD is controlled by operator T

T = 2g
−2

tr(φ
†
φ)

⋆ LSU(N) → LSU(N) −M2T breaks susy completely

• IR behavior of T in N = 2 theory governed by SW theory
⋆ T is the lowest component of the N = 2 stress tensor multiplet

– as such its dimension is protected
⋆ in SW theory, flows towards the Kähler potential is given by

T → i

4π

N−1
∑

k=1

(

āDkak − ākaDk

)

⋆ with magnetic monopole hyper-multiplet fields integrated in

T → i

4π

N−1
∑

k=1

(

āeff
Dk a

eff
k − āeff

k aeff
Dk

)

− 1
2

∑

k

h̄khk
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The Kähler potential on the Coulomb branch

• M2T will drive vacuum towards minimum of T
⋆ at the Z2N symmetric point [ED, Dumitrescu, Nardoni 2022]

⋆ for example for SU(3) with u = u2 and v = u3

• Quadratic approximation for T

T ≈
N−1
∑

k=1

(NΛ

π2
sk Im (aDk) − 1

2h̄khk

)

+
N−1
∑

k,ℓ=1

tkℓ āDk aDℓ

⋆ matrix t ∼ Im τ eff is positive definite for µ/Λ ≪ 1
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The Abelian Higgs model with susy breaking

• Assembling all the contributions into the Abelian Higgs model
⋆ incorporate susy breaking operator M2T in the quadratic approximation
⋆ retain only the effective potential of the model (to study vacua)

V =
N−1
∑

k=1

(

M2NΛ

π2
skIm (aDk) +

[

2|aDk|2 − 1
2M

2
]

h̄khk

)

+
N−1
∑

k,ℓ=1

(

M2tkℓaDkāDℓ + (t−1)kℓ
[

(h̄khℓ)(h̄ℓhk) − 1
2(h̄khk)(h̄ℓhℓ)

]

)

• Proposal: Abelian Higgs model is dual to flow from N = 2 to adjoint QCD
⋆ for small M back-reaction of T on flow can be ignored
⋆ for larger M we present evidence in favor of a coherent picture
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Vacuum alignment

• Minima of V occur at Re (aDk) = 0

• The Higgs fields hk align perfectly as SU(2)R doublets

⋆ minimize V for given values of h†khk;

V
∣

∣

∣

h̄khk

=
∑

k,ℓ

(t−1)kℓ vk · vℓ vk = h†
kσhk hk =

(

h1k
h2k

)

⋆ ground state is ferromagnetic under the mild assumption

(t−1)kℓ < 0 k 6= ℓ

⋆ holds for sufficiently small µ/Λ

• SU(2)R is spontaneously broken as soon as any hk 6= 0
⋆ producing two Goldstone bosons SU(2)R → U(1)R i.e. CP1-phase
⋆ matches expected chiral symmetry breaking in adjoint QCD 〈λiλj〉 6= 0
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Simplified Abelian Higgs model

• Vacuum alignment greatly simplifies the analysis of the potential
{

aDk = −iM xk

hi
k = Mδi1 hk

κ =
NΛ

π2M

⋆ in terms of these dimensionless real variables

V
M4

=

N−1
∑

k=1

(

1
2(4x

2
k − 1)h

2
k − κskxk

)

+

N−1
∑

k,ℓ=1

(

tkℓxkxℓ +
1
2(t

−1
)kℓh

2
kh

2
ℓ

)

• Reduced field equations for space-time independent VEVs xk, hk

κsk = 2h2kxk +

N−1
∑

ℓ=1

tkℓ xℓ

0 = hk

(

4x2k − 1 + 2
N−1
∑

ℓ=1

(t−1)kℓh
2
ℓ

)

(1)
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Organization of semi-classical analysis

• Steps in semi-classical analysis
⋆ Existence of solutions for given N, κ
⋆ Local stability of solutions: positive Hessian on the solution
⋆ Global stability of solutions: global minimum of V for given N, κ

• Solutions to Higgs eqs organized by partitions A|B
k ∈ A hk = 0

k ∈ B 4x2
k − 1 + 2

N−1
∑

ℓ=1

(t−1)kℓh
2
ℓ = 0

⋆ Clearly A ∪ B = {1, · · · , N − 1} and A ∩ B = ∅

• In a given partition A|B solve for hk with k ∈ B in terms of x
⋆ resulting in |B| coupled cubics in xk for k ∈ B
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Gauge group SU(2)

• Two possible branches [Cordova, Dumitrescu 2018]

⋆ Coulomb h1 = 0 implies x1 = κ/t11; potential Vred = V0

⋆ Higgs h1 6= 0 implies 2x1 − 4x3
1 = κ/t11

Vred = V0 − 1
8t11(1− 8x21)(1− 4x21)

2

x1

κ/t11

Higgs branch solution

Coulomb branch solution

Transition point

full lines: locally stable

dotted lines: locally unstable

x12x1 − 4x31
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Gauge group SU(3)

• Three possible branches
⋆ Coulomb branch hk = 0 implies xk = κ(t−1)k for k = 1, 2
⋆ Maximal Higgs branch hk 6= 0 for k = 1, 2

- local stability requires h1 = h2 when it exists
⋆ Mixed branch h1 6= 0, h2 = 0 (or h2 6= 0, h1 = 0)

- has higher potential than h1 = h2

• phase diagram of SU(2) with h1 = h2 and x1 = x2

x1

κ/(t11 + t12)

Maximal Higgs branch solution

Coulomb branch solution

Transition point
2x1 − 4x3

1
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Gauge group SU(4)

• Possible C-inequivalent branches
⋆ Coulomb hk = 0 for k = 1, 2, 3

⋆ Single Higgs h1 6= 0, h2, h3 = 0

⋆ Single Higgs h2 6= 0, h1, h3 = 0

⋆ Double Higgs h1, h2 6= 0, h3 = 0

⋆ Double Higgs h1, h3 6= 0, h2 = 0

⋆ Maximal Higgs h1, h2, h3 6= 0

Vred − V0

κ

⋆ All solutions in double Higgs branch

have h1 = h3 6= 0, h2 = 0
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Cascade flow for arbitrary gauge group SU(N)

• For larger values of N more mixed phases are stable

• Expansion in (lnµ/Λ)−1 makes diagonal of matrix t dominate
⋆ Pairs hn = hN−n decouple from one another
⋆ reduce to N − 1 copies of SU(2) case + perturbations

• Confirmed by numerical studies of coupled cubics

x

κ(t−1s)n

n = 1
n = 2
· · ·

· · ·
· · ·
· · ·
· · ·

Transition point

Coulomb branch

Higgs branch

3
4
√
2

x

2x − 4x3
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Summary

• Magnetic Abelian Higgs model dual for flow from N = 2 to adjoint QCD
⋆ Magnetic monopole fields have been “integrated in”
⋆ Soft susy breaking operator flows to Kähler potential of SW theory

• Semi-classical Abelian Higgs model matches SU(N) theory
⋆ For small susy breaking mass M stay in Coulomb branch
⋆ For increasing M , spontaneous breaking of SU(2)R

– matches chiral symmetry breaking in adjoint QCD
⋆ Vacuum alignment guarantees only two Goldstone bosons CP1 phase
⋆ For large M , Abelian Higgs model predicts monopole condensation

– matches confinement in adjoint QCD

• Semi-classical analysis of Abelian Higgs model predicts
⋆ Intermediate phases between Coulomb and Maximal Higgs phases
⋆ Approximations predict a cascade of phases

– in which more Higgs successively acquire VEVs
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