Introduction

Right-handed neutrinos are a candidate extension to the Standard Model (SM) which would facilitate generation of sub-eV neutrino masses.

They would not participate in SM interactions – ‘sterile.’ Their discovery would indicate new physics beyond the SM.

They could be detected by possible mixing with active (e, μ, τ) neutrinos.

Three active neutrinos + one sterile:

\[
\begin{aligned}
\nu_e & \rightarrow \nu_{\mu}, \\
\nu_\mu & \rightarrow \nu_{\tau}, \\
\nu_\tau & \rightarrow \nu_e
\end{aligned}
\]

Atomic Cs Source

Develop an atomic Cs source for loading a trap with ~ 10 μCi CsCl every few weeks. 10 μCi 131CsCl: \sim1 Ci ($I_{1/2} = 9.7$ d), 3 x 10^{15} Cs atoms.

We chose a thermionic emission-based source, which emits a directional, voltage-controlled atomic beam with geometry-determined divergence and recovers atoms which do not clear the exit aperture.

Decay Source Details

131Cs trapped in a MOT provides a sufficiently low-temperature ($20\, \mu$K) and spatially localized (1 mm) decay source.

Continuously maintain decay source cloud with $N > 10^6$ for $t \approx 1$ yr, while running a data collection sequence involving switched MOT.

Load with a second MOT through gravity-aided transfer. Separation of loading and experiment regions reduces reconstruction background.

Stable and/or automated assemblies desired: custom beam control boxes, kinematic 50 mm beam collimators, custom fiber coupling.

MOT Reaction Microscope Layout

Reconstruct vector momenta of 131Cs decay products using precision timing and position sensitive detectors, and calculate the missing neutrino mass.

131Cs: 100% electron capture decay, non-penetrating radiation, no additional gamma from daughter, alkali level structure.

131Cs Decay Sequence

1. K-capture decay
2. Trigger N-shell 34 keV X-ray
3. Auger electron(s) (20 – 120 eV)

$W_{\text{bias}} = 3.1\, \text{eV}$

Saha-Langmuir equation

\[n_e = \frac{n_0}{1 + e^{\frac{W_{\text{bias}} - \frac{1}{2}kT}{kT}}} \]

V_{bias}

Tantalum-threaded crucible

$W_{\text{Au}} = 5.30\, \text{eV}$

$W_{\nu} = 3.1\, \text{eV}$

$I_{\nu} = 3.89\, \text{eV}$

Orthotropic Oven

Projected Sensitivity

Solid lines are existing experimental bounds. Dotted lines are projected HUNTER sensitivities for a 1-year runtime.

Phases 2 and 3 feature upgrades that will increase energy and coupling resolution: increased MOT population, greater x-ray collection solid angle, larger MCP area.

Contact:

Eddie Chang: edchang@physics.ucla.edu
Christian Schneider: christian.schneider@physics.ucla.edu
Eric Hudson: eric.hudson@ucla.edu
Paul Hamilton: paul.hamilton@ucla.edu