Exact half-BPS Solutions to Type IIB supergravity

with John Estes & Michael Gutperle

KITP, Santa Barbara 2007

- Exact half-BPS Type IIB interface solutions I,
 Local solutions and supersymmetric Janus, arXiv:0705.0022

- Exact half-BPS Type IIB interface solutions II,
 Flux solutions and multi-Janus, arXiv:0705.0024

- Gravity duals of half-BPS Wilson loops, arXiv:0705.1004
• Construct solutions with 16 supersymmetries to Type IIB supergravity on the following spaces,

- $AdS_4 \times S^2 \times S^2 \times w\Sigma$ with $SO(2,3) \times SO(3) \times SO(3)$ symmetry
- $AdS_2 \times S^4 \times S^2 \times w\Sigma$ with $SO(2,1) \times SO(5) \times SO(3)$ symmetry

products warped over 2-dim parameter space Σ (to be specified)

• General local solution: exactly in terms of two harmonic functions on Σ

• General global solution: all non-singular Type IIB solutions are obtained for geometries whose boundary is locally asymptotically $\sim AdS_5 \times S^5$

• These solutions have varying dilaton, and non-zero 3-form fields.
Motivation

• Construction of AdS dual to half-BPS states in $\mathcal{N} = 4$ SYM
• Closely related to Lin, Lunin and Maldacena (LLM)
 – Half-BPS states on $\mathbb{R} \times S^3$, s-wave, $SU(4)$-highest weight
 – equivalent to free fermion quantum mechanics (Berenstein)
 – LLM provide AdS duals to these states,
 – obtain all half-BPS solutions with $\mathbb{R} \times SO(4) \times SO(4)$ symmetry, with constant dilaton, and vanishing 3-form fields
• $AdS_4 \times S^2 \times S^2 \times w \Sigma$ geometry: $\mathcal{N} = 4$ SYM with a planar interface
• $AdS_2 \times S^4 \times S^2 \times w \Sigma$ geometry: $\mathcal{N} = 4$ SYM with a Wilson line
• AdS$_4$ slicings of AdS$_5$ have 2+1-dim planar interface CFT duals

\[ds^2 = f(\mu)^2 (d\mu^2 + ds_{AdS_4}^2) + ds_{S^5}^2 \]

\[\phi(\mu) \]

• AdS$_5 \times S^5$ has $f(\mu) = (\cos \mu)^{-1}$, with $\mu \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and ϕ constant. • More generally, ϕ may vary: Janus solution (Bak, Gutperle, Hirano)

• $SO(2,3)$ isometry group of AdS$_4 = \text{conformal group of planar interface}$
Let x^π be a coordinate transverse to a planar interface at $x^\pi = 0$

Bulk Lagrangians on each side are supersymmetric $\delta \mathcal{L}_\pm = \partial_\mu X_\pm^\mu$

$$\mathcal{L} = \theta(x^\pi)\mathcal{L}_+ + \theta(-x^\pi)\mathcal{L}_-$$

$$\delta \mathcal{L} = \partial_\mu \left(\theta(x^\pi)X_+^\mu + \theta(-x^\pi)X_-^\mu \right) - \delta(x^\pi) \left(X_+^\pi - X_-^\pi \right)$$

Can one compensate for $X_+^\pi - X_-^\pi$ by interface Lagrangian \mathcal{L}_I?

Assume coupling varies across interface,

$$\mathcal{L} = \frac{1}{g(x^\pi)^2} \mathcal{L}_{\{N=4\}} + \mathcal{L}_I$$

Bulk susy transformations must also be modified on interface
Susy driven by $\psi^t Y \psi + cc$ term in \mathcal{L}_I, where Y acts on $SU(4)$ indices

$$Y \rightarrow \text{diag}[d_1, d_2, d_3, d_4] \quad d_i \text{ real } \geq 0$$

- **0 supersymmetries** $\text{diag}[0 \ 0 \ 0 \ 0]$, global $SU(4)$ R-symmetry,
 - CFT dual to Janus solution of Bak, Gutperle, Hirano
- **4 supersymmetries** $\text{diag}[1 \ 0 \ 0 \ 0]$, global $SU(3)$ R-symmetry;
 - CFT: Clark, Freedman, Karch, Schnabl; AdS dual D’Hoker, Estes, Gutperle
- **8 supersymmetries** $\text{diag}[1 \ 1 \ 0 \ 0]$, global $SO(2) \times SO(3)$ R-symmetry;
- **16 supersymmetries** $\text{diag}[1 \ 1 \ 1 \ 1]$, global $SO(3) \times SO(3)$ R-symmetry;
 - AdS dual: This talk!
AdS side : Type IIB Supergravity

- The fields of Type IIB sugra are

\[
g_{MN} \quad \text{metric} \quad M, N = 0, 1, \cdots, 9
\]
\[
B \quad \text{axion/dilaton} \quad P \sim dB \quad (\text{contains } \chi, \phi)
\]
\[
B(2) \quad \text{antisymmm} \quad G(3) \sim (dB(2) - BdB^*(2))
\]
\[
C(4) \quad \text{antisymmm} \quad F(5) = dC(4) + \text{Im}(\bar{B}(2)dB(2))/8 \quad F(5) = *F(5)
\]
\[
\psi_M \quad \text{gravitino} \quad \text{Weyl spinor}
\]
\[
\lambda \quad \text{dilatino} \quad \text{Weyl spinor}
\]

- The susy variation equations for the spinors are (J.H. Schwarz, 1983)

\[
\delta \psi_M = D_M \epsilon + \frac{i}{4} \left(F(5) \cdot \Gamma \right) \Gamma M \epsilon - \frac{1}{16} \left(\Gamma_M (G(3) \cdot \Gamma) + 2 (G(3) \cdot \Gamma) \Gamma_M \right) B^{-1} \epsilon^*
\]
AdS dual to Interface with 16 susys

- Isometry group must be $SO(2,3) \times SO(3) \times SO(3)$;
- Space-time is $AdS_4 \times S^2_1 \times S^2_2$ warped over a 2-dim parameter space Σ

\[
e^{i_1} = f_1 \hat{e}^{i_1} \quad ds^2 = f_1^2 ds^2_{S^2_1} + f_2^2 ds^2_{S^2_2} + f_4^2 ds^2_{AdS^2_4} + ds^2_{\Sigma}
\]
\[
e^{i_2} = f_2 \hat{e}^{i_2} \quad G(3) = g_a e^{45a} + i h_a e^{67a}
\]
\[
e^m = f_4 \hat{e}^m \quad F(5) = f_a (-e^{0123a} + \epsilon^a_e e^{4567e})
\]

- index ranges: $m = 0, 1, 2, 3$; $i_1 = 4, 5$; $i_2 = 6, 7$; $a = 8, 9$; $\epsilon^8_9 = 1$
- orthonormal frames $\hat{e}^m, \hat{e}^{i_1}, \hat{e}^{i_2}$ resp. on AdS_4, S^2_1, S^2_2 with unit radius
- e^a is the orthonormal frame on Σ with $ds^2_{\Sigma} = e^a \otimes e^a$
- functions f_1, f_2, f_4, f_a are real, g_a, h_a, B complex
• Reduce BPS equations $\delta \lambda = \delta \psi = 0$ to the above Ansatz

• Method of Killing spinors/vectors
 (Gauntlett, Martelli, Pakis, Waldram – Pilch, Warner)
 – well-suited for problems with $G_{(3)} = 0$
 – less suited for varying dilaton and $G_{(3)} \neq 0$

• $AdS_4 \times S^2 \times S^2$ BPS eqs set up by Gomis and Rommelsberger
 $AdS_2 \times S^4 \times S^2$ BPS eqs set up by Lunin
 – identified one harmonic function,
 – but obtaining f_1, f_2, f_4, \cdots still requires solving differential equations
 – which they did not succeed in doing.

• We work directly with the BPS equations;
 – we shall use Killing spinors as well,
 – but we shall not follow the standard methods of GMPW – PW
 – this will allow us to find the general solution, exactly.
• Solutions with 16 susys
 – axion/dilaton runs over a geodesic path

 – by $SL(2, \mathbb{R})$ symmetry of Type IIB, every solution to the BPS equations may be mapped to a solution with vanishing axion field, and real g_a, h_a, B.

 – Every solution to the BPS equations automatically solves the Bianchi and field equations
The role of Killing spinors

- The dilatino BPS equation, for non-constant dilaton, $\partial_M \phi \neq 0$,

 \[0 = 4(\partial_M \phi) \Gamma^M B^{-1} \varepsilon^* - (G_{(3)} \cdot \Gamma) \varepsilon \]

 - allows for at most 16 independent solutions ε

- The gravitino BPS equation should impose no further restrictions on ε,

 \[0 = D_M \varepsilon + \frac{i}{4} (F(5) \cdot \Gamma) \Gamma_M \varepsilon - \frac{1}{16} \left(\Gamma_M (G_{(3)} \cdot \Gamma) + 2(G_{(3)} \cdot \Gamma) \Gamma_M \right) B^{-1} \varepsilon^* \]

- On any one of the maximally symmetric components, AdS_4, S^2_1, S^2_2

 - ε should reduce to a “Killing spinor” (see e.g. Gomis and Rommelsberger)

 $\varepsilon = \text{spinor of maximal rank}$
Consider spheres $S^d = SO(d + 1)/SO(d)$ of even dimension d.

Maurer-Cartan connection ω, in spinor representation, $V \in SO(d + 1)$,

$$\omega = V^{-1}dV = \frac{1}{4} \omega_{\bar{m}\bar{n}} \gamma^{\bar{m}\bar{n}} \quad \bar{m}, \bar{n} = 1, \ldots, d + 1$$

– decomposes into a $SO(d)$ connection ω_{mn}, with $m, n = 1, \ldots, d$

and an orthonormal frame $e_m = \omega_m(d+1)$ on S^d

The parallel transport equation $(d + \omega)\chi = 0$ is solved by $\chi = V\chi_0$,

– No constraints on $\chi_0 \Rightarrow$ solution space always has maximal rank

– Coincides with the Killing spinor equation on S^d,

$$\left(d + \frac{1}{4} \omega_{mn} \gamma^{mn} - \frac{1}{2} \eta e_m \gamma^m \gamma^{d+1} \right) \chi_\eta = 0 \quad \eta = \pm 1$$

Analogously for $AdS_d = SO(2, d - 1)/SO(1, d - 1)$ spaces.
Reducing the BPS equations

• Use Killing spinors on $AdS_4 \times S^2 \times S^2$ as basis for the susy parameter ε,

$$\varepsilon = \sum_{\eta_1, \eta_2, \eta_3} \chi^{\eta_1, \eta_2, \eta_3} \otimes \zeta^{\eta_1, \eta_2, \eta_3}$$

- $\chi^{\eta_1, \eta_2, \eta_3}$ fixed basis, $\eta = \pm$ independently;
- $\zeta^{\eta_1, \eta_2, \eta_3}$ are 2-component spinors on Σ,

\Rightarrow 2 complex algebraic reduced dilatino eqs
\Rightarrow 6 complex algebraic reduced gravitino eqs along $AdS_4 \times S^2 \times S^2$;
\Rightarrow 4 complex differential reduced gravitino eqs.

• Symmetries of reduced BPS eqs lead to only non-vanishing components,

$$\zeta^{\pm \pm \pm -} \sim \zeta^{* \pm \mp +} \sim \alpha$$

$$\zeta^{- \pm \mp -} \sim \zeta^{* \pm \pm +} \sim \beta$$
Reducing the BPS equations cont’d

- Introduce local complex coordinates w, \bar{w} on Σ, $ds^2_\Sigma = 4\rho^2|dw|^2$

- The algebraic equations may be used to solve for $f_1, f_2, f_4, g_a, h_a, f_a$,

 \[
 f_1 = \alpha\bar{\beta} + \bar{\alpha}\beta \\
 f_2 = i\bar{\alpha}\beta - i\alpha\bar{\beta} \\
 f_4 = \alpha\bar{\alpha} + \beta\bar{\beta} \\
 g_z + ih_z = -4\alpha(\rho\beta)^{-1}\partial_w\phi \\
 g_z - ih_z = +4\beta(\rho\alpha)^{-1}\partial_w\phi \\
 f_z = \frac{i\nu}{2\alpha\beta} - \frac{\alpha^4 - \beta^4}{4\rho\alpha^2\beta^2}\partial_w\phi
 \]

- Then, eliminate these functions from the differential BPS equations,

- Two of the differential BPS eqs are equivalent to Cauchy-Riemann eqs,

 \[
 \partial_w(\rho\alpha^2) + \rho\beta^2\partial_w\phi = 0 \quad \Rightarrow \quad \alpha^2 + \beta^2 = \bar{\kappa} e^{-\bar{\lambda}} \rho^{-1} e^{-\phi} \\
 \partial_w(\rho\beta^2) + \rho\alpha^2\partial_w\phi = 0 \quad \Rightarrow \quad \alpha^2 - \beta^2 = \bar{\kappa} e^{+\bar{\lambda}} \rho^{-1} e^{+\phi}
 \]

- κ, λ arbitrary holomorphic, respectively 1-form and 0-form.
Mapping to a new integrable system

● Eliminating α, β from the remaining 2 differential eqs
 – leaves 2 complex differential eqs for ϕ, ρ in terms of κ, λ.
 – Drastic simplification by changing variables to $i\mu \equiv \lambda - \bar{\lambda}$, and

 \[
 \frac{\text{sh}(2\phi + 2\lambda)}{\text{sh}(2\phi + 2\bar{\lambda})} = e^{2i\vartheta} \quad \rho^8 = \hat{\rho}^8 \left(\sin 2\mu\right)^2 \frac{\kappa^4 \bar{\kappa}^4}{16} \frac{\sin \vartheta + \sin \mu}{(\sin \vartheta - \sin \mu)^3}
 \]

● Two differential eqs for $\vartheta, \hat{\rho}$ in terms of κ, μ become,

 \[
 \partial_w \vartheta - \left(e^{-i\vartheta} + i \sin \mu \left(\cos \mu\right)^{-1} \partial_w \mu\right) = -i\kappa \hat{\rho}^2 e^{i\vartheta/2}
 \]

 \[
 \partial_w \vartheta - 2e^{-i\vartheta} \left(\cos \mu\right)^{-1} \partial_w \mu = -2i\partial_w \ln \hat{\rho}^2
 \]

 = System of Bäcklund transfs for the partial differential eq,

 \[
 \partial_{\bar{w}} \left(\partial_w \vartheta - 2(\cos \mu)^{-1}(\partial_w \mu)e^{-i\vartheta}\right) + \text{c.c.} = 0
 \]

● This system is automatically integrable.
• A final change of variables, $\psi \equiv \hat{\rho}^{-2}(\cos \mu)e^{-i\vartheta/2}$ maps to a linear system,

$$\begin{align*}
\partial_w \psi &= -\kappa \cos \mu \\
\partial_w \bar{\psi} &= (i\psi - \bar{\psi} \sin \mu)(\partial_w \mu)(\cos \mu)^{-1}
\end{align*}$$

• whose general solution is given via κ, μ, or equivalently harmonic h_1, h_2,

$$\psi = ih_1e^{-\bar{\lambda}} + h_2e^{\bar{\lambda}} \quad e^{2\lambda} = i\partial_w h_1/\partial_w h_2 \quad \kappa^2 = 4i\partial_w h_1\partial_w h_2$$

• All fields of the Ansatz may be expressed in terms of h_1, h_2, e.g.

$$\begin{align*}
e^{4\phi} &= \frac{2h_1h_2|\partial_w h_2|^2 - h_2^2W}{2h_1h_2|\partial_w h_1|^2 - h_1^2W} \quad W \equiv \partial_w h_1\partial_{\bar{w}} h_2 + c.c. \\
\rho^8 &= \frac{W^2}{h_1^3h_2^3}\left(2h_1|\partial_w h_2|^2 - h_2W\right)\left(2h_2|\partial_w h_1|^2 - h_1W\right)
\end{align*}$$
AdS$_5 \times S^5$ and Janus with 16 susys

- We readily obtain a 2-parameter family of non-singular solutions,

\[
h_1 = \text{Im} \left(e^{w-\phi^+} - e^{-w-\phi^-} \right) \quad \quad h_2 = \text{Re} \left(e^{w+\phi^+} + e^{-w+\phi^-} \right)
\]

- For $\phi^+ = \phi^-$ gives $\text{AdS}_5 \times S^5$

- For $\phi^+ \neq \phi^-$, dilaton varies
 - in $\partial \Sigma$: $h_1 h_2 = 0$
 - in Σ : $W \leq 0, \ h_1, h_2 \geq 0$
More generally, regularity will require that inside Σ, we have

$$0 < e^{4\phi} = \frac{2h_1 h_2 |\partial_w h_2|^2 - h_2^2 W}{2h_1 h_2 |\partial_w h_1|^2 - h_1^2 W} \quad W \equiv \partial_w h_1 \partial_w h_2 + c.c.$$

$$0 \leq \rho^8 = \frac{W^2}{h_1^4 h_2^4} \left(2h_1 h_2 |\partial_w h_2|^2 - h_2^2 W \right) \left(2h_1 h_2 |\partial_w h_1|^2 - h_1^2 W \right)$$

Set of manifestly sufficient conditions inside Σ,

$$h_1 > 0 \quad h_2 > 0 \quad W \leq 0$$

- These are obeyed by $AdS_5 \times S^5$ and Janus with 16 susys

Still need boundary conditions on $\partial \Sigma$.
General regularity conditions cont’d

• General solution manifold S is specified by 3 conformal data: Σ, h_1, h_2.
 – Assume boundary of S is locally asymptotic to $AdS_5 \times S^5$;
 – Asymptotic $AdS_5 \times S^5$ regions originate from isolated points on $\partial \Sigma$;
 \Rightarrow Away from those points, $\partial \Sigma$ produces interior points of S;
 \Rightarrow Either S_1^2 or S_2^2 must shrink to zero on $\partial \Sigma$ (but never AdS_4)
 \Rightarrow Either $f_1 = 0$ or $f_2 = 0$ on $\partial \Sigma$ (but f_4 is never zero);

• The form of the solution then imposes boundary conditions on h_1, h_2,
 \[
 f_1^2 f_4^2 = 4 e^{2\phi} h_1^2 \quad f_1 = 0 \quad \Rightarrow \quad (h_1 = 0 \quad \& \quad \partial_w h_2 = 0) \\
 f_2^2 f_4^2 = 4 e^{-2\phi} h_2^2 \quad f_2 = 0 \quad \Rightarrow \quad (h_2 = 0 \quad \& \quad \partial_w h_1 = 0)
 \]

• Equivalent to two coupled electro-statics problems with
 – alternating Neumann and vanishing Dirichlet conditions on $\partial \Sigma$
 – $h_1, h_2 \geq 0$ in the interior of Σ
General regular solutions

- Map the domain Σ onto the lower half-plane with complex coordinate u.
 - The boundary $\partial \Sigma$ is then the real axis \mathbb{R}.
 - Points e_i on $\partial \Sigma$ where Dirichlet \leftrightarrow Neumann, $i = 1, 2, \cdots, 2g + 2$.
- Construction of h_1, h_2 via hyperelliptic curve of genus g, defined by
 \[s(u)^2 = (u - e_1)(u - e_2) \cdots (u - e_{2g+1}) \]
 \[e_{2g+1} < \cdots < e_1 < e_0 = \infty \]
- The meromorphic differentials $\partial h_1, \partial h_2$ may be written down explicitly,
 \[\partial h_1 = -i \frac{P_1(u)du}{s(u)^3} \]
 \[\partial h_2 = -\frac{P_2(u)du}{s(u)^3} \]
 - for two real polynomials P_1, P_2 of degree $3g + 1$,
 - Neumann and Dirichlet conditions automatically satisfied,
 - behavior at branch points $du/(u-e_i)^{3/2}$ guarantees asymptotic $AdS_5 \times S^5$
• Regularity requires that
 – P_1, P_2 have g common complex zeros $u_a, a = 1, \cdots, g,$
 – P_1 has $g + 1$ real zeros $\alpha_b, b = 1, \cdots, g + 1,$
 – P_2 has $g + 1$ real zeros $\beta_b, b = 1, \cdots, g + 1,$ satisfying the ordering
 \[
 \alpha_{g+1} < e_{2g+1} < \beta_{g+1} < e_{2g} < \cdots < e_2 < \alpha_1 < e_1 < \beta_1
 \]
• It only remains to ensure that the Dirichlet conditions VANISH,
 \[
 \text{Im} \int_{e_{2j}}^{e_{2j-1}} \partial h_1 = \text{Im} \int_{e_{2j+1}}^{e_{2j}} \partial h_2 = 0 \quad j = 1, \cdots, g
 \]
• Given the branch points e_i and the ordered real zeros $\alpha_b, \beta_b,$
 – The above period relations determine the g complex zeros $u_a.$
 – The geometry of the allowed moduli space is known explicitly for $g = 1,$
 – and is known locally for $g \geq 2$; analogous to instanton moduli space.
Topography of regular solutions

- $2g + 2$ branch points = different asymptotic boundary $AdS_5 \times S^5$ regions
 - each with its independent constant dilaton limit
- There are g independent pairs of homology 3-spheres, $j = 1, \ldots, g$
 - $S^3_{1j} = [e_{2j}, e_{2j-1}] \times f$ S^2_1 NSNS 3-form charges $\mathcal{H}_j = \int_{S^3_{1j}} H_{(3)}$
 - $S^3_{2j} = [e_{2j+1}, e_{2j}] \times f$ S^2_2 RR 3-form charges $\mathcal{F}_j = \int_{S^3_{2j}} F_{(3)}$
 - e.g. genus 1
• For any genus g, solutions have $2g + 2$ asymptotic $AdS_5 \times S^5$
• Number of free parameters of solution is $4g + 6$,
 – including: restoring the axion by $SL(2, \mathbb{R})$, and overall radius
Topo change: a collapsing branch cut

\[\partial h_1 = \frac{(u - u_i)(u - \bar{u}_i)(u - \alpha_i)}{(u - e_{2i})^{3/2}(u - e_{2i-1})^{3/2}}(\partial h_1)_{g-1} \]
\[\partial h_2 = \frac{(u - u_i)(u - \bar{u}_i)(u - \beta_{i+1})}{(u - e_{2i})^{3/2}(u - e_{2i-1})^{3/2}}(\partial h_2)_{g-1} \]

- As \(e_{2i-1} \to e_{2i} \) we must have \(\alpha_i \to e_{2i} \), and \(\text{Im} \int \partial h_1 = 0 \) forces \(u_i \to e_{2i} \)
- Two possibilities
 - (A) \(\beta_{i+1} \to e_{2i} \) gives topology change \((\partial h_{1,2})_g \to (\partial h_{1,2})_{g-1} \)
 - (B) \(\beta_{i+1} \not\to e_{2i} \) gives \(\partial h_1 \to (\partial h_1)_{g-1} \) but leaves a singular \(\partial h_2 \)

\(\sim \) the probe limit: a D5 (or NS5) brane remains
Total branch cut collapse

- Collapse of all branch cuts produces probe brane limit,
 - m_R D5 branes and m_{NS} NS5 branes with $m_R + m_{NS} = g$
 - leads to a simple explicit solution,
 \[
 h_1 = -2i(w - \bar{w}) \left(1 + \frac{C_0}{|w|^2}\right) + \sum_{j=1}^{m_R} \frac{C_j}{\ell_j} \ln \left|\frac{w + i\ell_j}{w - i\ell_j}\right|^{2}
 \]
 \[
 h_2 = -2(w + \bar{w}) \left(1 + \frac{D_0}{|w|^2}\right) - \sum_{i=1}^{m_{NS}} \frac{D_i}{k_i} \ln \left|\frac{w + k_i}{w - k_i}\right|^{2}
 \]
- for real $k_i, \ell_j, C_j, D_i, C_0, D_0$, and positive
- RR and NSNS 3-form charges given by
 \[
 \mathcal{F}_j = C_j/\ell_j \quad \quad \mathcal{H}_i = D_i/k_i
 \]
CFT dual to AdS_4 solutions (in progress)

- The AdS_4 factor indicates the presence of an interface.
- For $g = 0$, CFT dual has interface operators (built from bulk fields).
- For $g \geq 1$, several gauge groups
 - different species of $\mathcal{N}=4$, decoupled away from interface
 - interact only via the interface
 - are coupled via extra massless fields on the interface
 - On AdS side, extra massless fields arise from S^3 shrinking to zero
- For $g \geq 1$, as branch cuts collapse,
 - and we approach the limit with probe branes,
 - recover massless string excitations from probe D5 branes
 of De Wolfe, Freedman, Ooguri – Skenderis, Taylor
- Our solutions are fully back-reacted geometries with D5 and NS5 branes
The Wilson loop with 16 supersymmetries

- On CFT side, half-BPS Wilson loop in $\mathcal{N}=4$, $SU(N)$ SYM,

$$\mathcal{W} = \mathcal{W}_{16} = \mathrm{Tr}_R \exp i \int dt \left(A_0 + n^I \phi_I \right) \mid n \mid = 1$$

- Invariant under $SO(2,1) \times SO(3) \times SO(5)$

- On AdS side, quantum numbers can be realized via probe branes
 - fundamental rep \Box via D3 probe (Maldacena – Rey, Yee)
 - symmetrizations of \Box via D5 probes (Drukker, Fiol)

- General representation R, (Gomis, Passerini)
 - probe D5 branes $j = 1, \cdots, M$, with m_j units of F1 dissolved
 OR probe D3 branes $i = 1, \cdots, N$, with n_i units of F1 dissolved
Wilson loop AdS dual supergravity solution

- CFT symmetry $SO(2, 1) \times SO(3) \times SO(5)$ requires
- AdS dual geometry $AdS_2 \times S^2 \times S^4 \times w \Sigma$
 - Formally, obtained by analytic continuation from $AdS_4 \times S^2 \times S^2 \times w \Sigma$
 - Analytic continuation may send regular to singular, & change # susys
 \Rightarrow Topologies and # moduli different
- Our methods: general solution via harmonic functions h_1, h_2 on Σ.
e.g. The genus 1 solution for AdS_2

- For any genus g, solutions have only a single asymptotic $AdS_5 \times S^5$
- There are g independent homology S^3 carrying RR 3-form charges
- Number of free parameters of solution is $2g + 5$ for $g \geq 1$ (3 for $g = 0$).
Can one construct all solutions with 16 susys to Type IIB sugra?
Can one construct all solutions with 16 susys which have a CFT dual?
 – View as AdS duals to deformations of $\mathcal{N} = 4$ SYM
 – Expect a subgroup H of $SU(2, 2|4)$ with 16 susys to be preserved
 – Semi-simple H first, with maximal bosonic subgroup H_B

<table>
<thead>
<tr>
<th>H</th>
<th>H_B</th>
<th>space-time</th>
<th>sol’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SU(2</td>
<td>2)\times SU(2</td>
<td>2)$</td>
<td>$SO(4)\times SO(4)\times R$</td>
</tr>
<tr>
<td>$OSp(4</td>
<td>4^*)$</td>
<td>$SO(2, 3)\times SO(3)\times SO(3)$</td>
<td>$AdS_4\times S^2\times S^2\times \Sigma$</td>
</tr>
<tr>
<td>$OSp(4^*</td>
<td>4)$</td>
<td>$SO(2, 1)\times SO(3)\times SO(5)$</td>
<td>$AdS_2\times S^2\times S^4\times \Sigma$</td>
</tr>
<tr>
<td>$SU(2</td>
<td>4)$</td>
<td>$SO(3)\times SO(5)$</td>
<td>$M_3\times S^2\times S^4$</td>
</tr>
<tr>
<td>$SU(1, 1</td>
<td>4)$</td>
<td>$SO(2, 1)\times SO(5)$</td>
<td>$AdS_2\times S^5\times E_3$</td>
</tr>
<tr>
<td>$SU(2, 2</td>
<td>2)$</td>
<td>$SO(2, 4)\times SO(3)$</td>
<td>$AdS_5\times S^2\times E_3$</td>
</tr>
</tbody>
</table>
Further open problems

- Half-BPS solutions to Type IIB supergravity are surprisingly manageable;

- Regular solutions to AdS_2 and AdS_4 problems with other topologies?

- Can one derive a reduced quantization of only the half-BPS states
 - Free fermion/matrix reduction may be derived directly from LLM
 (Maoz, Rychkov – Grant, Maoz, Marsano, Papadodimas, Rychkov)

- Unified approach to 16 susy solutions from subgroups of $SU(2,2|4)$?
The End
• Using the same requirements as for the interface transformations,

\[
\mathcal{L}_\psi = \frac{\partial_\pi g}{g^3} \text{tr} \left(y_1 \bar{\psi} \gamma^\pi \psi + \frac{i}{4} y_2 i^{ij} \bar{\psi} \gamma^\pi \rho^{ij} \psi - \frac{i}{2} y_3 i^{ijk} \psi^t \rho^{ijk} \psi + cc \right)
\]

\[
\mathcal{L}_\phi = \frac{\partial_\pi g}{2g^3} \text{tr} \left(z_1^{ij} \partial_\pi (\phi^i \phi^j) + 2 z_2^{ij} \phi^{[i} D_\pi \phi^{j]} - i z_3^{ijk} \phi^i [\phi^j, \phi^k] \right)
\]

\[
\mathcal{L}_{\phi^2} = \frac{(\partial_\pi g)^2}{2g^4} \text{tr} \left(z_4^{ij} \phi^i \phi^j \right)
\]

• The interface terms have the following $SU(4)_R$ representations,

\[
\left\{ \begin{array}{c}
y_1 \\
z_1, z_4
\end{array} \right\} \begin{array}{c} 1 \\ 1 \oplus 20' \end{array}
\left\{ \begin{array}{c}
y_2, z_2 \\
y_3, z_3
\end{array} \right\} \begin{array}{c} 15 \\ 10 \oplus 10^* \end{array}
\]

• The $10, 10^*, 15, 20'$, couple to sugra fields; 1 couples to strings.
The maximally supersymmetric iCFT

- $D = \text{diag}[1\ 1\ 1\ 1]$, 8 Poincaré (16 conf) susy: global $SO(3) \times SO(3)$;

$$\mathcal{L}_I = \frac{\partial \pi g}{2g^3} \text{tr} \left(i \psi^t C \psi + i \psi^\dagger C \psi^* - 4i \phi^2 [\phi^4, \phi^6] \right)$$

$$\quad + (g^{-3}(\partial_\pi g)\partial_\pi - 2g^{-4}(\partial_\pi g)^2) \text{tr} \left((\phi^2)^2 + (\phi^4)^2 + (\phi^6)^2 \right)$$

- Last term may be absorbed into kinetic term for ϕ^i by rescaling $\phi^i \rightarrow g^2 \phi^i$ for $i = 2, 4, 6$ and $\phi^i \rightarrow \phi^i$ for $i = 1, 3, 5$

$$\mathcal{L}_I^{\text{rescaled}} = \frac{\partial \pi g}{2g^3} \text{tr} \left(i \psi^t C \psi + i \psi^\dagger C \psi^* - 4ig^6 \phi^2 [\phi^4, \phi^6] \right)$$

- The rescaled theory admits a **conformal limit** where g is a step function.