Lectures on Superstring Amplitudes

Part 1: Bosonic String

Eric D’Hoker
Mani L. Bhaumik Institute for Theoretical Physics
University of California, Los Angeles

Center for Quantum Mathematics and Physics - 2018
Amplitudes 2018 Summer School
Outline of lectures

• Lecture 1
 Bosonic strings and conformal field theory

• Lecture 2
 Superstring amplitudes

• Lecture 3
 Low energy effective interactions
Strings

- A string is a 1-dimensional object
 - open string = topology of an interval;
 - closed string = topology of a circle;
 - physical size Planck length $\ell_P \approx 10^{-33}\text{cm} \approx 10^{-19} \times$ size of the proton.

- Ultimate goal: unified theory of particle physics and gravity
 - elementary particles correspond to strings and their excited states;
 - consistently with quantum mechanics and general relativity;
 - remarkably unique structure.

- Immediate goal: relating string amplitudes and field theory amplitudes
 - at distance scales larger than the Planck length (low energy)
 a string effectively behaves as a point particle
 - string theory exhibits powerful structure of amplitudes
String Topology

- **Consistent interacting string theories**
 - only closed strings (Type IIA,B and heterotic)
 - closed and open strings (Type I)
 - Type II theories have open strings in the presence of D-branes

- **Strings live in a physical space-time** M
 - M may be a manifold or an orbifold (with mild isolated singularities)
 - superstring theory predicts 10-dim
 - but space-time visible to us is 4-dim. \Rightarrow requires “compactification”

- **Under time-evolution strings sweep out a 2-dim. surface**

 closed strings

 \[
 \begin{align*}
 \text{time-evolution} & \quad \text{(freely propagating)} \\
 \end{align*}
 \]

 basic interaction
 \[
 \begin{align*}
 \text{(purely topological)} \\
 \end{align*}
 \]
Perturbative String Amplitudes

- **Quantum probability “scattering” amplitudes**
 - Feynman functional integral/sum over all surfaces with given boundary components for initial and final strings

- **Closed oriented string perturbation theory**
 - The only remaining topological characterization is the genus $h \geq 0$
 - Probability amplitude includes sum over all genera
 - Weighed by a factor g_s^{2h-2} where g_s is the “string coupling”

- genus $h = \text{number of “loops”}$

$$g_s^{-2} + g_s^0 + g_s^2 + \cdots$$
Structure of string amplitudes

- **Perturbative part of string amplitude decomposes into a sum over topologies**

\[
A_{\text{perturbative}} = \sum_{h=0}^{\infty} g_s^{2h-2} \times A^{(h)}
\]

- \(A^{(h)}\) is the amplitude at genus \(h\)

- The perturbative expansion in \(g_s\) is asymptotic but not convergent (just as in field theory)

- **Non-perturbative part** (not considered here)
 - instantons \(\approx e^{-1/g_s^2}\)
 - D-branes contribute \(\approx e^{-1/g_s}\).
String Data (closed oriented bosonic strings)

- **Assume fixed space-time \(M \), with fixed metric \(G \)
 - Physical space-time has Minkowski signature metric \(G \)
 - Starting point for string theory is often a Riemannian metric
 (if needed to be analytically continued to Minkowski signature)

- **The 2-dimensional worldsheet \(\Sigma \) is mapped into space-time \(M \)
 - The space of all such maps \(x : \Sigma \rightarrow M \) is denoted \(\text{Map}(\Sigma) \).

- **Riemannian metric \(G \) induces a Riemannian metric \(x^*(G) \) on \(\Sigma \)
 - Hence \(\Sigma \) is a Riemann surface (i.e. complex manifold with holó transition functions)

- **Polyakov formulation invokes an independent metric
 - Riemannian metric \(g \) on \(\Sigma \)
 - Denote the \(\infty \)-dim. Riemannian manifold of such metrics by \(\text{Met}(\Sigma) \)
 - String amplitude at fixed genus \(h \) obtained by weighed sum over \(g, x \)

\[
A^{(h)} = \int_{\text{Met}(\Sigma)} Dg \int_{\text{Map}(\Sigma)} Dx \ e^{-I_G[x,g]}
\]
The worldsheet action I_G and the measure Dx

- **Basic Criteria**
 - Intrinsic = invariant under “reparametrizations” $\text{Diff}(\Sigma)$ of Σ
 - lead to a well-defined QFT (renormalizable)

- e.g. **Non-linear sigma model action** with Riemannian metric G

$$I_G[x, g] = \frac{1}{\alpha'} \int_{\Sigma} d^2\xi \sqrt{g} g^{mn} \partial_m x^\mu \partial_n x^\nu G_{\mu\nu}(x)$$

$m, n = 1, 2$ \hspace{1cm} worldsheet indices
$\mu, \nu = 1, \cdots, D$ \hspace{1cm} space-time Einstein indices

- **The measure is governed by the L^2-norm**

$$\|\delta x\|_G^2 = \int_{\Sigma} d^2\xi \sqrt{g} \delta x^\mu \delta x^\nu G_{\mu\nu}(x)$$

 - manifestly intrinsic
 - renormalizable in a generalized sense (the metric G is renormalized)
Weyl(Σ)-invariance

- **Weyl transformations:** $g_{mn} \rightarrow e^{2\sigma} g_{mn}$ leaving x^μ and G unchanged

- **The classical action I_G is Weyl-invariant for any metric G**
 - but the measure Dx is not Weyl-invariant
 - which gives rise to a “Weyl-anomaly”
 - = symmetry of classical action not preserved by quantization

- **The action I_G defines a conformal quantum field theory**
 $$e^{-W_G[g]} = \int_{\text{Map}(\Sigma)} Dx \ e^{-I_G[x,g]}$$
 - provided W_G is $\text{Diff}(\Sigma)$-invariant
 - obeys the following Ward identity under Weyl transformations
 $$\delta W_G[g] = \frac{c}{24} \int_\Sigma d^2\xi \sqrt{g} R_g \delta \sigma$$
 - where R_g is the scalar curvature of the metric g on the surface Σ

- **The measure Dg is not Weyl-invariant, but the combined amplitude**
 - is Weyl invariant for central charge $c = 26 = \dim(M)$
 - later we shall see for the superstring $D = 10 = \dim(M)$
Conformal Field Theory

- Stress tensor encodes response of field theory to change in metric
 \[T^c_{mn} = \frac{\delta W_G[g]}{\sqrt{g} \delta g^{mn}} \quad \text{subject to} \quad T^c_{mn} = T^c_{nm} \]
 - Diff(\Sigma)-invariance requires “a conserved stress tensor” \(\nabla^m T^c_{mn} = 0 \)
 - Weyl anomaly requires \(g^{mn} T^c_{mn} = -\frac{c}{12} R_g \)

- Traceless stress tensor \(T_{mn} \) obtained by adding a local counter-term
 - In local complex coordinates \((z, \bar{z})\) we have \(T_{zz} = T_{z\bar{z}} = 0 \) and
 \[T_{zz} = T^c_{zz} + \frac{c}{6} \left(2 \partial_z \Gamma^z_{zz} - (\Gamma^z_{zz})^2 \right) \quad \Gamma^z_{zz} = \partial_z \ln g_{z\bar{z}} \]
 - Successive derivatives of \(W \) in \(g_{mn} \) give correlators of \(T_{mn} \)
 - Their singular part is governed by the OPE and the Ward identities
 \[T_{zz} T_{ww} = \frac{c/2}{(z - w)^4} + \frac{2 T_{ww}}{(z - w)^2} + \frac{\partial_w T_{ww}}{z - w} + \text{regular} \]
 - The mode expansion \(T_{zz} = \sum_m z^{-2-m} L_m \) gives the Virasoro algebra
 \[[L_m, L_n] = (m - n) L_{m+n} + \frac{c}{12} m(m^2 - 1) \delta_{m+n,0} \]
Negative norm states

- Consider flat Minkowski $M = \mathbb{R}^{26}$ with metric $\eta = \text{diag}(- + \cdots +)$
 - Maps $x : \Sigma \to M$ satisfy Laplace equation $\partial_{z} \partial_{\bar{z}} x^\mu = 0$ for $\mu = 1, \ldots, 26$
 - Concentrate on holomorphic field
 \[
 \partial_{z} x^\mu = \sum_{m \in \mathbb{Z}} x^\mu_m z^{-m-1}
 \]
 \[
 [x^\mu_m, x^n_n] = m \delta_{m+n,0} \eta^{\mu \nu}
 \]
 \[
 (x^\mu_n)^\dagger = x^\mu_{-n}
 \]
 - Similarly anti-holomorphic field $\partial_{\bar{z}} x^\mu$ produces modes \bar{x}^μ

- Single string ground state $|0, k\rangle$ labeled by its momentum k satisfies
 \[
 x^\mu_0 |0, k\rangle = k^\mu |0, k\rangle \quad x^\mu_m |0, k\rangle = 0 \text{ for } m > 0
 \]
 - Fock space (holo sector) generated by linear combinations of
 \[
 x^\mu_{m_1} \cdots x^\mu_{m_p} |0, k\rangle \quad m_1, \ldots, m_p < 0
 \]
 - Lowest excited state $\varepsilon^\mu(k) x^\mu_{-1} |0, k\rangle$ has norm
 \[
 \|\varepsilon^\mu(k) x^\mu_{-1} |0, k\rangle\|^2 = \varepsilon^\mu(k) \varepsilon^\nu(k) \eta^{\mu \nu} \| |0, k\rangle\|^2
 \]
 - Component $\varepsilon^\mu = \delta^\mu,0$ produces negative norm state (assuming $\| |0, k\rangle\|^2 > 0$)
 \[
 \Rightarrow \text{ inconsistent with quantum mechanical probability interpretation}
 \]
Eliminating negative norm states – conformal symmetry

• Conformal symmetry guarantees the existence of Virasoro algebra

\[[L_m, L_n] = (m - n)L_{m+n} + \frac{c}{12}m(m^2 - 1)\delta_{m+n,0}\]

– for the bosonic string $c = 26$ and

\[
L_m = \sum_{n \in \mathbb{Z}} \frac{1}{2} x_{m-n} \cdot x_n \quad L_0 = \frac{1}{2} x_0^2 + \sum_{n \in \mathbb{N}} x_{-n} \cdot x_n
\]

• A state $|\psi\rangle$ is “physical” if $(L_0 - 1)|\psi\rangle = L_m|\psi\rangle = 0$ for $m \in \mathbb{N}$

– Eliminates all negative norm states;
– Decouples all null states produced by gauge transformations;

– e.g. on states $|\psi\rangle = \varepsilon(k) \cdot x_{-1}|0, k\rangle$

 \star L_1 constraint imposes $k \cdot \varepsilon(k) = 0$
 \star L_0 constraint imposes $k^2 = 0$
 \star L_m constraints are automatic for $m \geq 2$ for this particular state

– the state $|0, k\rangle$ itself is a tachyon (to be absent in the superstring)

\Rightarrow Negative norm and null states eliminated by conformal symmetry
Conformal symmetry in curved space-times

- **Condition for Weyl-invariance on the metric** G
 - Infinitesimal Weyl variation for arbitrary G to one-loop order in α'

$$
\delta W_G[g] = \int_{\Sigma} d^2 \xi \sqrt{g} g^{mn} \partial_m x^\mu \partial_n x^\nu R_{\mu\nu}(x) \delta \sigma + \cdots + \mathcal{O}(\alpha')
$$

where $R_{\mu\nu}$ is the Ricci tensor of the metric $G_{\mu\nu}$

- Thus, to leading order in α' conformal invariance requires $R_{\mu\nu} = 0$
Conformal symmetry in curved space-times

- **Condition for Weyl-invariance on the metric** G
 - Infinitesimal Weyl variation for arbitrary G to one-loop order in α'

$$\delta W_G[g] = \int_{\Sigma} d^2 \xi \sqrt{g} \ g^{mn} \partial_m x^\mu \partial_n x^\nu R_{\mu\nu}(x) \delta \sigma + \cdots + O(\alpha')$$

where $R_{\mu\nu}$ is the Ricci tensor of the metric $G_{\mu\nu}$
 - Thus, to leading order in α' conformal invariance requires $R_{\mu\nu} = 0$
Vertex operators

• Small fluctuations in the metric are gravitons
 – A string couples to N gravitons in flat space by slightly perturbing the metric

$$G_{\mu\nu}(x) = \eta_{\mu\nu} + \sum_{i=1}^{N} \varepsilon_{i\mu\nu}(k_i) e^{ik_i\mu x^\mu} + O(\varepsilon^2)$$

 – conformal invariance requires G to satisfy the linearized Einstein equations

$$k_i^2 = 0 \quad k_i^{\mu} \varepsilon_{i\mu\nu}(k_i) = 0 \quad \text{for } i = 1, \ldots, n$$

• Vertex operator formulation is obtained by expanding in powers of ε_i

$$A = \sum_{h=0}^{\infty} g_s^{2h-2} \int_{\text{Met}(\Sigma)} Dg \int_{\text{Map}(\Sigma)} Dx \mathcal{V}_1[x, g] \cdots \mathcal{V}_N[x, g] e^{-I_{\eta}[x, g]}$$

 – where the vertex operator for an on-shell physical graviton is given by

$$\mathcal{V}_i[x, g] = \varepsilon_{i\mu\nu}(k_i) \int_{\Sigma} d^2\xi \sqrt{g} g^{mn} \partial_m x^\mu \partial_n x^\nu e^{ik_\mu x^\mu}$$

 – On-shell conditions $k_i^2 = k_i \cdot \varepsilon_i = 0$ guarantee conformal invariance
Diff(Σ) × Weyl(Σ) and Moduli space

- **Fix topology of Σ**
 - Diff(Σ) re-parametrizes ξ^m on Σ by vector field $\delta \xi^m = -\delta v^m$
 - Weyl (Σ) $\delta g_{mn} = \nabla_m \delta v_n + \nabla_n \delta v_m$
 - Weyl (Σ) $\delta g_{mn} = 2\delta \sigma g_{mn}$ with $\delta \sigma$ an arbitrary real function of Σ

- **Orbits of Diff(Σ) × Weyl(Σ) acting on the space Met(Σ)**

 ![Diagram of orbits]

 \[\text{Met}(\Sigma)/\text{Diff}(\Sigma) \times \text{Weyl}(\Sigma) = \mathcal{M}_h\]

- **Moduli space \mathcal{M}_h of compact Riemann surfaces of genus h (no boundaries)**
 = space of conformal structures (= space of complex structures)

 \[\dim_{\mathbb{C}} \mathcal{M}_h = \begin{cases}
 0 & h = 0 \\
 1 & h = 1 \\
 3h - 3 & h \geq 2
\end{cases}\]
Some trivial moduli spaces

- **Given an infinitesimal** δg_{mn} **can one solve for** $\delta \sigma$ **and** δv_m **?**

 $$\delta g_{mn} = 2\delta \sigma g_{mn} + \nabla_m \delta v_n + \nabla_n \delta v_m$$

- Eliminate the trace part by choosing $\delta \sigma = g^{mn} \delta g_{mn} + \nabla_m \delta v^m$

- In local complex coordinates (z, \bar{z}), remaining eqs for traceless part

 $$\delta g_{zz} = \nabla_z v_z \quad \delta g_{\bar{z}\bar{z}} = \nabla_{\bar{z}} v_{\bar{z}}$$

- Integrability automatic since ∇_z and $\nabla_{\bar{z}}$ act on different functions
 \Rightarrow locally, or in any simply connected set, you can always solve

- **The sphere S^2 has no moduli** (compact)
 - Its stereographic projection onto \mathbb{C} admits a globally conformally flat metric

 $$ds^2 = \frac{|dz|^2}{(1 + |z|^2)^2}$$

- **The Poincaré upper half plane \mathcal{H} has no moduli** (non-compact)

 $$ds^2 = \frac{|dz|^2}{(\text{Im } z)^2} \quad \text{Im } z > 0$$
Moduli deformations of the torus

- The torus may be viewed as the product of two circles A and B
 - The ratio of their lengths and relative angle provide two real moduli
 - equivalently represented by parallelogram in \mathbb{C} with sides pairwise identified

$A \quad B$

Σ

- The complex number τ contains the information of relative lengths and angle

- Constant metric deformations equivalently provide a complex modulus
 - translation invariance on the circles induces translation invariance on the torus
 - by translation invariance, metric is constant on Σ
 - constant trace-part of δg_{mn} eliminated by constant σ
 - but constant $\delta g_{zz} = \partial_z v_z$ has no periodic solutions v_z
 \Rightarrow constant δg_{zz} provides the deformation of the complex modulus of the torus.
Moduli space of the torus

• Oriented Riemann surfaces: cycles \mathcal{A} and \mathcal{B} ordered
 – equivalently choose orientation $\tau \in \mathcal{H}_1 = \{ \tau \in \mathbb{C}, \text{Im}(\tau) > 0 \}$

• Space of inequivalent tori = space of inequivalent lattices $\Lambda_\tau = \mathbb{Z} \oplus \tau \mathbb{Z}$
 – but different values of τ may give the same lattice

\[
\begin{align*}
\omega_1' &= a \omega_1 + b \omega_2 \\
\omega_2' &= c \omega_1 + d \omega_2 \\
\tau &= \omega_1 / \omega_2 \\
\tau' &= (a \tau + b) / (c \tau + d)
\end{align*}
\]

– identical lattices requires $\Lambda_{\tau'} \subset \Lambda_\tau$ and $\Lambda_\tau \subset \Lambda_{\tau'}$
– so that $a, b, c, d \in \mathbb{Z}$ and $ad - bc = 1$ and \(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL(2, \mathbb{Z}) \)
– generated by $\tau \to \tau + 1$ and $\tau \to -\tau^{-1}$

• Moduli space of tori = space of inequivalent lattices $= \mathcal{H}_1 / SL(2, \mathbb{Z})$
 – standard fundamental domain

\[
\mathcal{H}_1 / SL(2, \mathbb{Z}) \equiv \left\{ \tau \in \mathcal{H}_1, |\tau| \geq 1, |\text{Re}(\tau)| \leq \frac{1}{2} \right\}
\]
Decomposing the measure Dg

- At any point $g \in \text{Met}(\Sigma)$ the measure Dg factors

$$Dg = Z_g \times D\sigma \times Dv \times d\mu_{M_h}$$

Jacobian Weyl Diff$_0$ M_h

- infinitesimal Weyl $\delta g_{mn} = \delta \sigma g_{mn}$
- infinitesimal Diff$_0$ $\delta g_{mn} = \nabla_m \delta v_n + \nabla_n \delta v_m$
- infinitesimal moduli deformations δg_{mn}

Goal

- compute Z_g
- formulate Z_g in terms of ghosts
- omit volume factors $D\sigma Dv$ of the group $\text{Diff}^+(\Sigma) \ltimes \text{Weyl}(\Sigma)$

To decompose Dg we study tensor spaces (alias line bundles) on Σ
Tensor Spaces - Line Bundles on Σ

- A one-form $\phi = \phi_z dz + \phi_{\bar{z}} d\bar{z}$ on Σ decomposes into $K \oplus \bar{K}$

 $K = \{ \phi_z dz \}$ is the (space of sections of the) canonical bundle on Σ

 for $m \in \mathbb{Z}$ define $K^m = \{ \phi_z \cdots dz^m \}$ and $\bar{K}^m = \{ \phi_{\bar{z}} \cdots d\bar{z}^m \} \approx K^{-m}$

- L^2 inner product for $\phi_1, \phi_2 \in K^m$

 $$(\phi_1, \phi_2) = \int_\Sigma d\bar{z}dz \sqrt{g}(g_{z\bar{z}})^{-m} \phi_1^* \phi_2$$

 The spaces K^m and K^n with $m \neq n$ are mutually orthogonal

- Covariant derivative on $\phi \in K^m$ decomposes $\nabla\phi = \nabla_z^{(m)} \phi + \nabla_{\bar{z}}^{(m)} \phi$

 $\nabla_z^{(m)} : K^m \rightarrow K^{m+1}$ mutual adjoint operators $(\nabla_z^{(m)})^\dagger = -\nabla_{\bar{z}}^{(m+1)}$

 $\nabla_{\bar{z}}^{(m)} : K^m \rightarrow K^{m-1}$ with $\nabla_{\bar{z}}^{(m)} = g_{z\bar{z}} \nabla_{\bar{z}}^{(m)}$

- Riemann-Roch and Vanishing Theorems

 $\dim_{\mathbb{C}} \text{Ker} \nabla_{\bar{z}}^{(m)} - \dim_{\mathbb{C}} \text{Ker} \nabla_{z}^{(1-m)} = (2m - 1)(h - 1)$

 $\text{Ker}\nabla_{\bar{z}}^{(m)} = 0$ for $h \geq 2$ and $m \leq -1$ (no holó vector fields for $h \geq 2$)

 $\text{Ker}\nabla_{\bar{z}}^{(m)} = 0$ for $h = 0$ and $m \geq 1$ (no holó forms on the sphere)
Decomposing the tangent space to \(\text{Met}(\Sigma) \)

- **Orthogonal decomposition of** \(T_g(\text{Met}(\Sigma)) \)

\[
T_g(\text{Met}(\Sigma)) = \{ \delta \sigma \ g_{z \bar{z}} \} \oplus \{ \delta g_{zz} = g_{z \bar{z}} \delta \eta_{\bar{z}} \} \oplus \{ \delta g_{\bar{z} \bar{z}} = g_{z \bar{z}} \delta \eta_{z \bar{z}} \}
\]

\[
\delta \sigma \in K^0 \quad \delta \eta_{z \bar{z}} \in K \otimes \bar{K}^{-1} \quad \delta \eta_{z \bar{z}} \in \bar{K} \otimes K^{-1}
\]

- **\(\text{Diff}_0 \) acts by** \(\delta \eta_{z \bar{z}} = \nabla^{(1)}_{\bar{z}} \delta v_{\bar{z}} \)

 - For \(h \geq 1 \), the range of the operator \(\nabla^{(1)}_{\bar{z}} \) is NOT all of \(K \otimes \bar{K}^{-1} \)
 - The orthogonal complement of the range of \(\nabla^{(1)}_{\bar{z}} \) is given by

\[
\text{Range} \nabla^{(1)}_{\bar{z}} \oplus \ker(\nabla^{(1)}_{\bar{z}})^\dagger = K \otimes \bar{K}^{-1} \approx K^2
\]

- **Holomorphic quadratic differentials** \(\phi^j \in \ker \nabla^{(2)}_{\bar{z}} \approx \ker(\nabla^{(1)}_{\bar{z}})^\dagger \)

 - Hence we may identify \(\ker \nabla^{(2)}_{\bar{z}} = T^*_{(1,0)}(\mathcal{M}_h) \)
 - One-forms \(\delta m^j \in T^*_{(1,0)}(\mathcal{M}_h) \) given by linear forms on \(\bar{K} \otimes K^{-1} \)

\[
\delta m^j = (\delta \eta, \phi^j) = \int_{\Sigma} d\bar{z}dz \delta \eta_{z \bar{z}} \phi^j_{z \bar{z}}
\]

 - Weyl-invariant pairing and vanishes on \(\delta \eta \in \text{Range} \nabla^{(1)}_{\bar{z}} \)
 - Riemann-Roch and Vanishing give \(\text{dim}_\mathbb{C} \mathcal{M}_h = 3h - 3 \) for \(h \geq 2 \)
Decomposing the measure Dg (cont’d)

• Parametrize \mathcal{M}_h by a slice in $\text{Met}(\Sigma)$ transverse to $\text{Weyl} \ltimes \text{Diff}_0$

 orbits of $\text{Diff}(\Sigma) \ltimes \text{Weyl}(\Sigma)$

 m^j, \tilde{m}^j local coordinates on \mathcal{M}_h

• Carry out a change of integration variables

\[
T_g(\text{Met}(\Sigma)) = \{\delta \sigma g_{zz}\} \oplus \{\delta \eta_z \bar{z}\} \oplus \{\delta \eta_{\bar{z}} z\}
\]

– Orthogonality implies that the measure factorizes $Dg = D\sigma D\eta D\bar{\eta}$

– The change of variables is given by (repeated indices j are summed)

\[
\delta \eta_{\bar{z}} z' = \nabla_{\bar{z}}^{(-1)} \delta v z + (\mu_j)_z \bar{z} \delta m^j
\]

\[
(\mu_j)_z \bar{z} = g^{z\bar{z}} \frac{\partial g_{z\bar{z}}}{\partial m^j}
\]

\[
\delta \eta_z \bar{z}' = \nabla_{z}^{(1)} \delta v \bar{z} + (\tilde{\mu}_j)_z \bar{z} \delta \tilde{m}^j
\]

\[
(\tilde{\mu}_j)_z \bar{z} = g^{z\bar{z}} \frac{\partial g_{z\bar{z}}}{\partial \tilde{m}^j}
\]
Ghosts

- **Use standard rules to introduce ghosts for the determinant**
 - gauge transformations \((\delta v^z, \delta v^{\tilde{z}}) \rightarrow (c^z, c^{\tilde{z}})\) Grassmann-odd ghosts
 - conjugate \((\delta \eta^z_{\tilde{z}}, \delta \eta^{\tilde{z}}z) \rightarrow (b_{zz}, \tilde{b}_{\tilde{z}z})\) Grassmann-odd anti-ghosts
 - extended ghost action
 \[
 \int \Sigma d^2 z \left[b_{zz} (\partial_z c^z + \mu_j \delta m^j) + \tilde{b}_{\tilde{z}z} (\partial_{\tilde{z}} c^{\tilde{z}} + \tilde{\mu}_j \delta \tilde{m}^j) \right]
 \]
 - Here \(\delta m^j, \delta \tilde{m}^j\) are differential one-forms which are Grassmann odd

- **Integrating out** \(\delta m^j, \delta \tilde{m}^j\) **gives the standard ghost representation**
 \[
 \int D(x^\mu, b, \tilde{b}, c, \tilde{c}) \mathcal{V}_1 \cdots \mathcal{V}_N e^{-I_G - I_{gh}} \prod_j \delta(\langle b, \mu_j \rangle) \delta(\langle \tilde{b}, \tilde{\mu}_j \rangle) dm^j d\tilde{m}^j
 \]
 - where \(I_{gh}\) is the standard ghost action
 \[
 I_{gh} = \int \Sigma d^2 z \left[b_{zz} \partial_z c^z + \tilde{b}_{\tilde{z}z} \partial_{\tilde{z}} c^{\tilde{z}} \right]
 \]
 - gauge fixed formulation has BRST invariance
 - for the sphere and the torus, quotient out by conformal automorphisms
Bosonic string has tachyon and no fermions: unphysical

• Warm-up: tree-level tachyon scattering amplitude
 – tachyon vertex operator \(V(k_i) = \int_\Sigma d^2z_i \sqrt{g(z_i)} : e^{ik_i \cdot x(z_i)} : \)
 – scalar Green function on the sphere with metric \(|dz|^2/(1 + |z|^2)^2 \)
 \[
 \langle x^\mu(z)x^\nu(w) \rangle = \eta^{\mu\nu}G(z, w) \\
 G(z, w) = -\ln \frac{|z - w|^2}{(1 + |z|^2)(1 + |w|^2)}
 \]

• Sphere has no moduli, ghost and scalar partition functions are constant
 \[
 \langle \prod_{i=1}^N d^2z_i \sqrt{g(z_i)} : e^{ik_i \cdot x(z_i)} : \rangle = \prod_{i=1}^N d^2z_i \prod_{i<j}^N |z_i - z_j|^\alpha' k_i \cdot k_j
 \]
 – Integrand invariant under \(z_i \to (\alpha z_i + \beta)/(\gamma z_i + \delta) \) with \(\begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix} \in SL(2, \mathbb{C}) \)
 – Factor out volume of \(SL(2, \mathbb{C}) \) by fixing \(z_N = \infty, z_{N-1} = 1, z_{N-2} = 0 \)

• The 4-tachyon amplitude with \(s_{ij} = -\alpha'(k_i + k_j)^2/4 \)
 \[
 \frac{1}{g_s^2} \int \Sigma d^2z |z|^{\alpha' k_1 \cdot k_2} |z - 1|^{\alpha' k_1 \cdot k_3} = \frac{\Gamma(-1 - s)\Gamma(-1 - t)\Gamma(-1 - u)}{g_s^2 \Gamma(2 + s)\Gamma(2 + t)\Gamma(2 + u)}
 \]
 – Tachyon poles at \(s, t, u = -1 \)
Kawai-Lewellen-Tye (KLT) relations

- **Tree-level closed string amplitudes are bilinears in open string amplitudes**
 - Closed string amplitudes on the sphere, vertex operators in interior
 - Open string amplitude on upper half plane, vertex operators on boundary
 - Consider open and closed string 4-tachyon amplitudes

\[A^{(0)}_{\text{open}}(s, t) = \int_0^1 d\xi |\xi|^k_1 \cdot k_2 |1 - \xi|^{k_2 \cdot k_3} \]
\[A^{(0)}_{\text{closed}}(s, t, u) = \int_{S^2} d^2 z |z|^{2k_1 \cdot k_2} |1 - z|^{2k_2 \cdot k_3} \]

- Parametrize \(z = \alpha + i\beta \) then \(z \)-integrand is analytic function of \(\beta \) with branch points at \(\beta = \pm i\alpha \) and \(\beta = \pm i(1 - \alpha) \)
- Deform \(\beta \)-contour from real to imaginary axis, but pick up phases
\[\int_{S^2} d^2 z |z|^{2k_1 \cdot k_2} |1 - z|^{2k_2 \cdot k_3} = \sin(\pi k_2 \cdot k_3) \int_0^1 d\xi |\xi|^{k_1 \cdot k_2} |1 - \xi|^{k_2 \cdot k_3} \int_1^\infty d\eta |\eta|^{k_1 \cdot k_2} |1 - \eta|^{k_2 \cdot k_3} \]

- Converting the second integral back to \(A^{(0)}_{\text{open}} \), we obtain the KLT relation
\[A^{(0)}_{\text{closed}}(s, t, u) = \sin(\pi k_2 \cdot k_3) A^{(0)}_{\text{open}}(s, t) A^{(0)}_{\text{open}}(t, u) \]

- Does the worldsheet secretly have a Minkowski signature structure?
- No generalization known to loop level
Lectures on Superstring Amplitudes

Part 2: Superstrings

Eric D’Hoker
Mani L. Bhaumik Institute for Theoretical Physics
University of California, Los Angeles

Center for Quantum Mathematics and Physics - 2018
Amplitudes 2018 Summer School
Superstring Perturbation Theory

- **Theory of fluctuating random surfaces** (closed strings shown)

 - governed by topological expansion in the genus h weighed by g_s^{2h-2}

\[g_s^{-2} + g_s^0 + g_s^2 + \cdots \]

- **Bosonic string**

 - unstable with closed string tachyon

 - Nature has fermions!

- **Superstrings generalize bosonic string**

 - they have fermions

 - no tachyon

 - supersymmetry
Approaches to Superstring Perturbation Theory

- **Goal is to obtain superstring amplitudes at all genera**
 - Ramond-Neveu-Schwarz formulation of fermionic strings; w/ Gliozzi-Scherk-Olive projection to supersymmetric spectrum;
 - Green-Schwarz space-time supersymmetric formulation;
 - Mandelstam light-cone formulation;
 - String field theory;
 - Topological string theory;
 - Berkovits pure spinor formulation.

- **Different perturbative superstring theories** (in 10 dimensions)
 - Type I open & closed, orientable & non-orientable, D-branes
 - Type IIA,B closed orientable, D-branes
 - Heterotic closed orientable $E_8 \times E_8$, $Spin(32/\mathbb{Z}_2)$

- Here: **RNS formulation, closed orientable superstrings, dimension 10**
Genus-zero four-graviton superstring amplitude

- Kinematics of the four-graviton amplitude
 - momenta of gravitons k_i^μ are conserved $\sum_i k_i^\mu = 0$
 - choose basis of factorized polarization tensors $\varepsilon_i^{\mu\nu} = \varepsilon_i^\mu \tilde{\varepsilon}_i^\nu$
 - masslessness $k_i^2 = 0$ and transversality $k_i^\mu \varepsilon_i^\mu = k_i^\mu \tilde{\varepsilon}_i^\mu = 0$ for $i = 1, 2, 3, 4$
 - kinematic invariants $s = s_{12} = s_{34}, t = s_{14} = s_{23}, u = s_{13} = s_{24}$

 $$s_{ij} = -\alpha'(k_i + k_j)^2/4$$

- Tree-level four-graviton amplitude is given by

$$A^{(0)}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = \frac{1}{g_s^2} \times K\tilde{K} \times \frac{1}{stu} \frac{\Gamma(1-s)\Gamma(1-t)\Gamma(1-u)}{\Gamma(1+s)\Gamma(1+t)\Gamma(1+u)}$$

 - Kinematical factor K given in terms of $f_i^{\mu\nu} = k_i^\mu \varepsilon_i^\nu - k_i^\nu \varepsilon_i^\mu$ by

 $$K = (f_1f_2)(f_3f_4) + (f_1f_3)(f_2f_4) + (f_1f_4)(f_2f_3) - 4(f_1f_2f_3f_4) - 4(f_1f_2f_4f_3) - 4(f_1f_3f_2f_4)$$

 - for \tilde{K} replace ε_i by $\tilde{\varepsilon}_i$

 - Equivalently, $K \times \tilde{K} = R^4$ with R the linearized Weyl tensor

 - String duality: symmetric in s, t, u

 - Poles in each channel, at $s, t, u = 0, 1, 2, \cdots$
Genus-one four-graviton superstring amplitude

- **Type II four-graviton amplitude to one-loop order** (Green, Schwarz 1982)

\[
A^{(1)}(\varepsilon_i, \bar{\varepsilon}_i, k_i) = \mathcal{R}^4 \int_{\mathcal{M}_1} \frac{d^2 \tau}{(\text{Im} \, \tau)^2} B^{(1)}(s_{ij}|\tau)
\]

- Partial amplitude \(B^{(1)}\) is a modular function in \(\tau \in \mathcal{M}_1 = \mathcal{H}_1/SL(2, \mathbb{Z})\)

\[
B^{(1)}(s_{ij}|\tau) = \int_{\Sigma} \prod_{i=1}^4 \frac{d^2 z_i}{\text{Im} \, \tau} \exp \left(\sum_{i<j} s_{ij} G(z_i - z_j|\tau) \right)
\]

- \(G(z|\tau)\) is the scalar Green function on the torus \(\Sigma\) of modulus \(\tau\).
- Analogous formulas for Heterotic strings and more external states.

- **Singularity structure**
 - For fixed \(\tau\) integrations over \(\Sigma\) produce poles in \(B^{(1)}\) at positive integers \(s_{ij}\).
 - The integral over \(\tau\) converges absolutely only for \(\text{Re}(s_{ij}) = 0\).
 - Analytic continuation to \(s_{ij} \in \mathbb{C}\) via decomposition of \(\mathcal{M}_1\).
 - Branch cuts in \(s_{ij}\) starting at integers \(\geq 0\) are produced by \(\tau \rightarrow i\infty\) region.
Loop momenta

- Loop momenta may be exposed
 - Choose a canonical basis of homology cycles \mathcal{A}, \mathcal{B}.
 - Choose loop momentum p flowing through the cycle \mathcal{A},

$$
\int_{\mathcal{M}_1} \frac{d^2 \tau}{(\operatorname{Im} \tau)^2} \mathcal{B}^{(1)} (s_{ij} | \tau) = \int_{\mathbb{R}^{10}} d^{10} p \int_{\mathcal{M}_1} \int_{\Sigma^4} \left| \mathcal{F}(z_i, k_i, p | \tau) \right|^2
$$

- Chiral amplitude \mathcal{F} is locally holomorphic in τ and z_i

$$
\mathcal{F}(z_i, k_i, p | \tau) = e^{i \pi p^2 + 2i \pi p} \prod_{i<j} \vartheta_1 (z_i - z_j | \tau)^{-s_{ij}} \, d\tau \prod_{i=1}^{4} dz_i
$$

 - at the cost of non-trivial monodromy

$$
\mathcal{F}(z_i + \delta_i, \ell \mathcal{A}, k_i, p | \tau) = e^{2i \pi k \ell \cdot p} \mathcal{F}(z_i, k_i, p | \tau)
$$

$$
\mathcal{F}(z_i + \delta_i, \ell \mathcal{B}, k_i, p | \tau) = \mathcal{F}(z_i, k_i, p + k_\ell | \tau)
$$

 - Modular invariance of $\mathcal{A}^{(1)}$ guarantees independence of choices.
 - Hermitian pairing of \mathcal{F} and $\bar{\mathcal{F}}$ is familiar from 2-d CFT where loop momentum p labels conformal blocks of 10 copies of $c = 1$.
RNS formulation of superstrings

- $M = \mathbb{R}^{10}$ flat Minkowski space-time with Lorentz group $SO(1,9)$
 - x^μ scalars on worldsheet Σ, map Σ into M
 - ψ^μ spinors on Σ but Lorentz vector under $SO(1,9)$
 * Worldsheet supersymmetry $\Rightarrow \Sigma$ is a super Riemann surface
 * Two sectors: NS bosons $SO(1,9)$-tensors
 R fermions $SO(1,9)$-spinors

- With Minkowski signature Σ
 - ψ^μ and $\tilde{\psi}^\mu$ are *independent* Majorana-Weyl spinors of opposite chirality

- With Euclidean signature Σ
 - ψ^μ and $\tilde{\psi}^\mu$ must be *independent* complex Weyl spinors
 - Globally, on a compact Riemann surface of genus h,
 * All ψ^μ are sections of a the same spin bundle S (and $\tilde{\psi}^\mu$ of \tilde{S})
 * 2^{2h} distinct spin structures for S (and 2^{2h} independently for \tilde{S})

- GSO projection requires independent summation over spin structures
Quantization of worldsheet spinor fields

• Illustrate
 – Ramond and Neveu-Schwarz sectors
 – independence of chiralities

• Dirac action and equation for flat $M = \mathbb{R}^{10}$ with metric η
 – All components of ψ_{+}^μ are sections of the same spin bundle S
 – Complex structure J with local complex coordinates (z, \bar{z})
 – Dirac action,

$$I_{\psi}[\psi, J] = \frac{1}{2\pi} \int_{\Sigma} d\bar{z}dz \psi_{+}^\mu \partial_{\bar{z}}\psi_{+}^\nu \eta_{\mu\nu}$$

 – Dirac equation $\partial_{\bar{z}}\psi_{+}^\mu = 0$ has locally holomorphic solutions,
 – but products of operators produce singularities

$$\psi_{+}^\mu(z)\psi_{+}^\nu(w) = \frac{\eta_{\mu\nu}}{z-w} + \text{regular}$$

 – each component ψ^μ generates a CFT with central charge $c = \frac{1}{2}$.
Quantization of worldsheet spinor fields (cont’d)

• Quantization on flat cylinder or conformal equivalent flat annulus
 – cylinder \(w = \tau + i\sigma \) with identification \(\sigma \approx \sigma + 2\pi \)
 – annulus centered at \(z = 0 \), conformally mapped by \(z = e^w \)
 – one-forms related by \(dz = e^w \, dw \), spinors by \((dz)^{\frac{1}{2}} = e^{w/2} \, (dw)^{\frac{1}{2}} \)
 – fields related by conformal transformation \(\psi_{cyl}(z) = e^{w/2} \psi_{ann}(w) \)

• Two possible spin structures

 \(\text{NS} \quad \psi^\mu_{cyl}(\tau, \sigma + 2\pi) = -\psi^\mu_{cyl}(\tau, \sigma) \) or \(\psi^\mu_{ann}(e^{2\pi i} \, z) = +\psi^\mu_{ann}(z) \)
 \(\text{R} \quad \psi^\mu_{cyl}(\tau, \sigma + 2\pi) = +\psi^\mu_{cyl}(\tau, \sigma) \) or \(\psi^\mu_{ann}(e^{2\pi i} \, z) = -\psi^\mu_{ann}(z) \)

• Free field quantization in annulus representation

 \(\text{NS} \quad \psi^\mu(z) = \sum_{r \in \frac{1}{2} + \mathbb{Z}} b^\mu_r \, z^{-\frac{1}{2} - r} \quad \{b^\mu_r, b^\nu_s\} = \eta^{\mu \nu} \delta_{r+s,0} \)
 \(\text{R} \quad \psi^\mu(z) = \sum_{n \in \mathbb{Z}} d^\mu_n \, z^{-\frac{1}{2} - n} \quad \{d^\mu_m, d^\nu_n\} = \eta^{\mu \nu} \delta_{m+n,0} \)
Quantization of worldsheet spinor fields (cont’d)

• Lorentz generators of $SO(1, 9)$:

$$[J^{\mu\nu}, \psi^\kappa(z)] = \eta^{\nu\kappa} \psi^\mu(z) - \eta^{\mu\kappa} \psi^\nu(z)$$

$$J^{\mu\nu}_{NS} = \sum_{r \in \mathbb{N}-\frac{1}{2}} (b^\mu_{-r} b^\nu_r - b^\nu_{-r} b^\mu_r)$$

$$J^{\mu\nu}_R = \frac{1}{2}[d^\mu_0, d^\nu_0] + \sum_{n \in \mathbb{N}} (d^\mu_{-n} d^\nu_n - d^\nu_{-n} d^\mu_n)$$

• Fock space construction produces two sectors

★ NS ground state defined by $b^\mu_r |0; NS\rangle = 0$ for all $r > 0$
 – $|0; NS\rangle$ is unique and in trivial representation of $SO(1, 9)$
 – Fock space = linear combinations of $b^{\mu_1}_{-r_1} \cdots b^{\mu_p}_{-r_p} |0; NS\rangle$, $r_i > 0$
 – All states in tensor reps of $SO(1, 9)$ are space-time bosons.

★ R ground state defined by $d^\mu_n |0, \alpha; R\rangle = 0$ for all $n > 0$
 – $|0, \alpha; R\rangle$ is degenerate and in spinor rep. of $SO(1, 9)$, states labelled by α
 – Fock space = linear combinations of $d^{\mu_1}_{-n_1} \cdots d^{\mu_p}_{-n_p} |0, \alpha; R\rangle$, $n_i > 0$
 – All states in spinor reps of $SO(1, 9)$ are space-time fermions.
Summation over spin structures

- **Theory with bosons and fermions requires both NS and R sectors**
 - to include both, one must sum over two spin structures of the annulus

- **Type II spin structures of** ψ^\pm **are independent of one another**
 - space-time fermions are in the $R \otimes NS$ and $NS \otimes R$ sectors
 - which could never arise if spin structures for opposite chiralities coincided

- **On the torus, viewed as cylinder + identification**
 - spin structures along cycle of cylinder produce R and NS sectors
 - sum over spin structures along conjugate cycle produces GSO-projection
 - reduces to half the states in both R and NS sectors
 - R-sector: space-time spinor of definite chirality
 - NS-sector: eliminates the tachyon
 \Rightarrow sum over *all* spin structures
Summation over spin structures (cont’d)

- **Fix a canonical homology basis of cycles** $\mathcal{A}_I, \mathcal{B}_I$ of $H_1(\Sigma, \mathbb{Z}) \quad I = 1, \ldots, h$
 - with canonical intersection pairing
 $\#(\mathcal{A}_I, \mathcal{A}_J) = \#(\mathcal{B}_I, \mathcal{B}_J) = 0$ and $\#(\mathcal{A}_I, \mathcal{A}_J) = \delta_{IJ}$

- **Transformations which maps one canonical basis into another**
 - linear with integer coefficients
 - preserve the intersection matrix: $Sp(2h, \mathbb{Z})$

- **On Riemann surface of higher genus h sum over all spin structures**
 - along \mathcal{A}-cycles produces R and NS sectors
 - along \mathcal{B}-cycles produces GSO-projection
 - mapped into one another by $Sp(2h, \mathbb{Z}_2)$
Super Riemann surfaces

- **Ordinary Riemann surface** (locally \mathbb{C} with coordinate z)
 - complex manifold: holomorphic transition functions $z \to z'(z)$;
 - complex structure $= \text{conformal structure } J$
 - Moduli space $\mathcal{M}_h = \{ J \}/\text{Diff}(\Sigma)$ of genus h compact Riemann surfaces

- **Complex super manifold** (locally $\mathbb{C}^{1|1}$ with coordinates $z|\theta$)
 - holó transition functions $z|\theta \to z'(z, \theta)|\theta'(z, \theta)$ generate $\mathcal{N} = 2$ super conformal

- **Super Riemann surface** (locally $\mathbb{C}^{1|1}$ with coordinates $z|\theta$)
 - holó transition functions $z|\theta \to z'|\theta'$ rescale $D_\theta = \partial_\theta + \theta \partial_z$
 - Transition functions define $\mathcal{N} = 1$ superconformal structure J
 - Globally: $T\Sigma$ has a completely non-integrable subbundle of rank $0|1$

- **Moduli space of compact super Riemann surfaces**: $\mathcal{M}_h = \{ J \}/\text{Diff}(\Sigma)$
 - equivalence classes of superconformal structures J
 \[
 \dim_{\mathbb{C}} \mathcal{M}_h = \begin{cases}
 0|0 & h = 0 \\
 1|0 \text{ or } 1|1 & h = 1 \text{ even or odd spin structure} \\
 3h - 3|2h - 2 & h \geq 2
 \end{cases}
 \]

 - odd modulus at $h = 1$ odd spin structure is a book keeping device;
 - odd moduli really first appear at genus 2, as curved super spaces.
Superstring worldsheets and moduli spaces

• Heterotic
 – Left : RS Σ_L, moduli space \mathcal{M}_L coord resp. \tilde{z} and \tilde{m}^i
 – Right : SRS Σ_R, moduli space \mathcal{M}_R coord resp. (z, θ) and (m^i, ζ^α)
 – Worldsheet is a cycle $\Sigma \subset \Sigma_L \times \Sigma_R$ of dim $1|1$
 subject to $\Sigma_{\text{red}} = \text{diag}(\Sigma_{L\text{red}} \times \Sigma_{R\text{red}}) : \tilde{z}^* = z + \text{nilpotent}$
 – Moduli space is a cycle $\Gamma \subset \mathcal{M}_L \times \mathcal{M}_R$ of dim $3h - 3|2h - 2$ for $h \geq 2$
 subject to $\Gamma_{\text{red}} = \text{diag}(\mathcal{M}_{L\text{red}} \times \mathcal{M}_{R\text{red}}) : (\tilde{m}^i)^* = m^i + \text{nilpotent}$
 (reduced space obtained by setting all nilpotent variables to zero)

• Type II
 – Left : SRS Σ_L, moduli space \mathcal{M}_L coord resp. $(\tilde{z}, \tilde{\theta})$ and $(\tilde{m}^i, \tilde{\zeta}^\alpha)$
 – Right : SRS Σ_R, moduli space \mathcal{M}_R coord resp. (z, θ) and (m^i, ζ^α)
 – Worldsheet is a cycle $\Sigma \subset \Sigma_L \times \Sigma_R$ of dim $1|2$
 – Moduli space is cycle $\Gamma \subset \mathcal{M}_L \times \mathcal{M}_R$ of dim $3h - 3|4h - 4$ for $h \geq 2$
 subject to $\tilde{z}^* = z + \text{nilpotent}$ and $(\tilde{m}^i)^* = m^i + \text{nilpotent}$

• Super-Stokes theorem ensures independence of the choice of cycles
 – in amplitudes with BRST invariant vertex operators
 – consistent definition of superstring amplitudes to all genera (Witten 2012)
Worldsheet action for Type II superstrings

- **Worldsheet is** $\Sigma \subset \Sigma_L \times \Sigma_R$
 - Σ_L has superconformal structure \tilde{J} with local coordinates $\tilde{z}|\tilde{\theta}$
 - Σ_R has superconformal structure J with local coordinates $z|\theta$

- **Superconformal invariant matter action**
 - worldsheet matter field

 $$X^\mu(\tilde{z}, z|\tilde{\theta}, \theta) = x^\mu(\tilde{z}, z) + \theta \psi^\mu(\tilde{z}, z) + \tilde{\theta} \tilde{\psi}^\mu(\tilde{z}, z) + \tilde{\theta} \theta F^\mu(\tilde{z}, z)$$

 - Worldsheet action in local coordinates ($D_\theta = \partial_\theta + \theta \partial_z$)

 $$I_m[X^\mu, \tilde{J}, J] = \int_{\Sigma} [d\tilde{z}dz|d\tilde{\theta}d\theta] \tilde{D}_{\tilde{\theta}}X^\mu D_\theta X_\mu$$

 - Superconformal algebra on fields generated by

 $S_{z\theta} = S_{z\theta} + \theta T_{zz}$

 $S_{z\theta} = \frac{1}{2} \psi^\mu \partial_z x_\mu$

 $T_{zz} = -\frac{1}{2} \partial_z x^\mu \partial_z x_\mu + \frac{1}{2} \psi^\mu \partial_z \psi_\mu$

 $\tilde{S}_{\tilde{z}\tilde{\theta}} = \tilde{S}_{\tilde{z}\tilde{\theta}} + \tilde{\theta} \tilde{T}_{\tilde{z}\tilde{z}}$

 $\tilde{S}_{\tilde{z}\tilde{\theta}} = \frac{1}{2} \tilde{\psi}^\mu \partial_{\tilde{z}} x_\mu$

 $\tilde{T}_{\tilde{z}\tilde{z}} = -\frac{1}{2} \partial_{\tilde{z}} x^\mu \partial_{\tilde{z}} x_\mu + \frac{1}{2} \tilde{\psi}^\mu \partial_{\tilde{z}} \tilde{\psi}_\mu$
Deformations of superconformal structures

- Under deformation of \tilde{J} for Σ_L and J for Σ_R

$$\delta I = \int_{\Sigma} [d\tilde{z}dz|d\tilde{\theta}d\theta] \left(H_{\tilde{\theta}}\tilde{z} S_{\tilde{z}\theta} + \tilde{H}_{\theta}\tilde{\tilde{z}} \tilde{S}_{\tilde{z}\tilde{\theta}} \right)$$

- in components by integrating out $\tilde{\theta}, \theta$,

$$\delta I = \int_{\Sigma_{\text{red}}} d\tilde{z}dz \left(\mu_{\tilde{z}} \tilde{T}_{zz} + \chi_{\tilde{z}} \theta S_{\tilde{z}\theta} + \tilde{\mu}_{\tilde{z}} \tilde{T}_{\tilde{z}\tilde{z}} + \tilde{\chi}_{\tilde{z}} \tilde{\theta} \tilde{S}_{\tilde{z}\tilde{\theta}} \right)$$

- recover Beltrami differentials $\mu, \tilde{\mu}$ and worldsheet gravitino fields $\chi, \tilde{\chi}$

$$H_{\tilde{\theta}}\tilde{z} = \tilde{\theta}(\mu_{\tilde{z}} \tilde{z} + \theta \chi_{\tilde{z}} \theta) \quad \tilde{H}_{\theta}\tilde{\tilde{z}} = \theta(\tilde{\mu}_{\tilde{z}} \tilde{\tilde{z}} + \tilde{\theta}\tilde{\chi}_{\tilde{z}} \tilde{\theta})$$

- Finite deformations of the metric with $\tilde{\mu} = \tilde{\mu}$ and $\tilde{\chi} = \tilde{\chi}$

integrate to the standard 2-dim $\mathcal{N} = 1$ supergravity action

(Brink, Di Vecchia, Howe; Deser, Zumino 1976)

- Type II superstring perturbation theory requires $\tilde{\mu} \neq \tilde{\mu}$ and $\tilde{\chi} \neq \tilde{\chi}$
Type II string amplitude

- Parametrize deformations \(\tilde{H}_\theta \tilde{z}, H_\theta \tilde{z} \) by slice \(\{ \tilde{J}(\tilde{m}), J(m) \} \) in \(\mathcal{M}_L \times \mathcal{M}_R \)

\[
\begin{align*}
H_\theta \tilde{z} &= \tilde{D}_\theta V \tilde{z} + H_A \delta m^A \\
\tilde{H}_\theta \tilde{z} &= D_\theta \tilde{V} \tilde{z} + \tilde{H}_A \delta \tilde{m} \tilde{A}
\end{align*}
\]

\(m^A = (m^i, \zeta^\alpha) \)

- Super conformal invariant ghost action

\[
I_{gh} = \int_{\Sigma} [d\tilde{z}d\tilde{z}d\theta d\bar{\theta}]
\left(B_{z\theta} \tilde{D}_{\tilde{\theta}} C \tilde{z} + \tilde{B}_{\tilde{z}\tilde{\theta}} D_{\theta} C \tilde{z} + B_{z\theta} H_A \delta m^A + \tilde{B}_{\tilde{z}\tilde{\theta}} \tilde{H}_A \delta \tilde{m} \tilde{A} \right)
\]

- The integrand for the full amplitude is given by

\[
\int D(X B \tilde{B} C \tilde{C}) \mathcal{V}_1 \cdots \mathcal{V}_n \prod_{\tilde{A}, A} [d\tilde{m}^{\tilde{A}} dm^A] \delta(\langle \tilde{B}, \tilde{H}_A \rangle) \delta(\langle B, H_A \rangle) e^{-I_m - I_{gh}}
\]

- \(\mathcal{V}_1 \cdots \mathcal{V}_n \) are BRST-invariant vertex operators.
- Picture Changing Operator formalism \(\text{(Friedan, Martinec, Shenker 1986)} \)
 * may be obtained as singular limit for \(\chi \) supported at points
 * globally regular reformulation via “vertical integration” \(\text{(Sen, Witten 2016)} \)
Loop momenta and Chiral amplitudes

- h independent loop momenta p^μ_I defined to flow across \mathcal{A}_I cycles

$$p^\mu_I = \oint_{\mathcal{A}_I} dz \partial_z x^\mu$$

- Chiral Amplitudes (ED, Phong 1988)
 - Massless NS bosons with factorized polarization tensor $\tilde{\varepsilon}^\mu_{i} = \varepsilon^\mu_i \tilde{\varepsilon}_i$
 - Chiral amplitude at fixed loop momenta is given by

$$\mathcal{F}_R(\mathcal{J}, \varepsilon_i, k_i, p_I) = \left\langle \mathcal{V}_1 \cdots \mathcal{V}_N e^{\frac{p^\mu_I}{\delta} \oint_{\mathcal{B}_I} dz \partial_z x^\mu} e^{\int \Sigma H_{\tilde{z}}^z S_{z\tilde{z}}} \prod_A \delta(\langle B, H_A \rangle) \, dm^A \right\rangle$$

- Correlation functions $\langle \cdots \rangle$ computed with chiral Green functions

- Full Superstring Amplitudes
 - obtained by pairing left and right and integrating over $\Gamma \in \mathcal{M}_L \times \mathcal{M}_R$

$$\mathcal{A}^{(h)}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = \int_{\mathbb{R}^{10}} dp^\mu_I \int_{\Gamma} \mathcal{F}_L(\tilde{\mathcal{J}}, \tilde{\varepsilon}_i, k_i, p^\mu_I) \mathcal{F}_R(\mathcal{J}, \varepsilon_i, k_i, p^\mu_I)$$

- integration over vertex operator insertion points included in integration over Γ
- cfr “double copy construction” in supergravity calculations
Parametrization of super moduli

- **Superconformal structure** $\mathcal{J} \in \mathcal{M}_h$ specified by transition functions
 - Concrete calculations use parametrization by gravitino field $\chi \tilde{z}^\theta$

- **Local parametrization of moduli** (in conformal-invariant theory)
 - Conformal structure J with metric $g = |dz|^2$ in local coordinates (z, \tilde{z})
 - deform conformal structure by Beltrami differential to $g' = |dz + \mu d\tilde{z}|^2$
 - realized in CFT by inserting $\int_{\Sigma} d\tilde{z}dz \mu \tilde{z}^z T_{zz}$ to all orders in μ

- **Local parametrization of supermoduli** (in superconformal-invariant theory)
 - Start with Σ_{red} with complex structure given by $J \in \mathcal{M}_{\text{red}}$
 - Deform super conformal structure by inserting T and S

\[\int_{\Sigma_{\text{red}}} d\tilde{z}dz \left(\mu \tilde{z}^z T_{zz} + \chi \tilde{z}^\theta S_{z\theta} \right) \]

 - χ and μ parametrized by local odd coordinates on \mathcal{M}_h

- **For $h = 2$, even spin structures, holó projection $\mathcal{M}_2 \rightarrow \mathcal{M}_2$ exists**
 - via the super period matrix (ED, Phong 2001)

- **For $h \geq 5$ no holó projection $\mathcal{M}_h \rightarrow \mathcal{M}_h$ exists** (Donagi, Witten 2013)
The super period matrix \((\text{even spin structures})\)

- Start from conformal structure \(J\) for \(\Sigma_{\text{red}}\) with holó 1-forms \(\omega_I\)
 \[
 \oint_{\partial I} \omega_J = \delta_{IJ} \quad \oint_{\Sigma_B} \omega_J = \Omega_{IJ} \quad I, J = 1, 2
 \]

- Deform to superconformal structure \(J\) on \(\Sigma\) with superholó forms \(\hat{\omega}_I\)
 \[
 \oint_{\partial I} \hat{\omega}_J = \delta_{IJ} \quad \oint_{\Sigma_B} \hat{\omega}_J = \hat{\Omega}_{IJ} \quad I, J = 1, 2
 \]

- Explicit formula for the super period matrix \(\hat{\Omega}\) for even spin structure \(\delta\)
 \[
 \hat{\Omega}_{IJ} = \Omega_{IJ} - \frac{i}{8\pi} \int_{\Sigma_{\text{red}}} \omega_I(z) \chi(z) S_{\delta}(z, w|\Omega) \chi(w) \omega_J(w) + \int_{\Sigma_{\text{red}}} \mu \omega_I \omega_J
 \]

- \(\hat{\Omega}_{IJ}\) is locally supersymmetric; \(\hat{\Omega}_{IJ} = \hat{\Omega}_{JI}\); and \(\text{Im} \hat{\Omega} > 0\)
- Every \(\hat{\Omega}\) corresponds to an ordinary Riemann surface
- Szegö kernel \(S_{\delta}(z, w|\Omega)\) is non-singular in the interior of \(\mathcal{M}_2\)

\(\Rightarrow\) Projection using \(\hat{\Omega}\) is holomorphic and natural for genus 2
Projecting and pairing Chiral Amplitudes

Chiral Amplitudes on \mathcal{M}_2
- Natural parametrization of \mathcal{M}_2 by $(\hat{\Omega}_{IJ}, \zeta^\alpha)$ (even spin structure δ)
- involves measure $d\kappa[\delta](\hat{\Omega}, \zeta)$ and correlation functions $C[\delta](\varepsilon_i, k_i, p_I|\hat{\Omega}, \zeta)$

Projection to chiral amplitudes on \mathcal{M}_2
- by integrating over ζ and summing over δ at fixed $\hat{\Omega}$
\[
\mathcal{R}(\varepsilon_i, k_i, p_I|\hat{\Omega}) = \sum_\delta \int_\zeta d\kappa[\delta](\hat{\Omega}, \zeta) C[\delta](\varepsilon_i, k_i, p_I|\hat{\Omega}, \zeta)
\]
\[
\mathcal{L}(\bar{\varepsilon}_i, k_i, p_I|\hat{\Omega}) = \sum_\tilde{\delta} \int_{\tilde{\zeta}} d\kappa[\tilde{\delta}](\hat{\Omega}, \tilde{\zeta}) C[\tilde{\delta}](\bar{\varepsilon}_i, k_i, p_I|\hat{\Omega}, \tilde{\zeta})
\]
- for heterotic, \mathcal{L} is chiral half of bosonic string, has no integral in $\tilde{\zeta}$
- phase factors determined by $Sp(4, \mathbb{Z})$ modular invariance

Pairing left and right chiral amplitudes, integrating over p_I and $\hat{\Omega}$
\[
A^{(2)}(\varepsilon_i, \bar{\varepsilon}_i, k_i) = \int_{\mathcal{M}_2} d\hat{\Omega} \int dp_I^\mu \mathcal{R}(\varepsilon_i, k_i, p_I|\hat{\Omega}) \mathcal{L}(\bar{\varepsilon}_i, k_i, p_I|\hat{\Omega})
\]
- Integral over p_I is Gaussian and can be carried out explicitly.
Genus two

- **Siegel Upper half space** S_2

 $$S_2 = \{ \Omega_{IJ} = \Omega_{JI} \in \mathbb{C} \text{ with } I, J = 1, 2 \text{ and } Y = \text{Im} \Omega > 0 \}$$

 - $Sp(4, \mathbb{R})$ acts by $\Omega \to (A\Omega + B)(C\Omega + D)^{-1}$
 $$M^t JM = J \quad M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \quad J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$

 - S_2 has $Sp(4, \mathbb{R})$-invariant metric ds_2^2 and volume form $d\mu_2$
 $$ds_2^2 = \sum_{I, J, K, L = 1, 2} Y_{IJ}^{-1} d\bar{\Omega}_{JK} Y_{KL}^{-1} d\Omega_{LI}$$

- **Compact Riemann surfaces** Σ

 - Choose canonical homology basis of $\mathcal{A}_I, \mathcal{B}_I$ cycles for $H_1(\Sigma, \mathbb{Z})$.

 - ω_I dual holomorphic (1,0) forms,
 $$\oint_{\mathcal{A}_I} \omega_J = \delta_{IJ} \quad \oint_{\mathcal{B}_I} \omega_J = \Omega_{IJ}$$

 - Riemann relations imply $\Omega \in S_2$;

 - Modular group $Sp(4, \mathbb{Z})$; moduli space $M_2 = S_2/Sp(4, \mathbb{Z})$.

Genus-two Type II four-graviton amplitude

Type II four-graviton amplitude (ED, Phong 2001 – 2005)

\[
A^{(2)}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = g_s^2 \mathcal{K}\bar{\mathcal{K}} \int_{M_2} d\mu_2 \mathcal{B}^{(2)}(s_{ij}|\Omega)
\]

\[
\mathcal{B}^{(2)}(s_{ij}|\Omega) = \int_{\Sigma^4} \frac{\mathcal{Y} \wedge \bar{\mathcal{Y}}}{(\det \text{Im} \Omega)^2} \exp \left(\sum_{i<j} s_{ij} G(z_i, z_j|\Omega) \right)
\]

- \(G(z_i, z_j)\) is the genus-two scalar Green function;
- \(\Delta(z_i, z_j)\) is a bi-holomorphic form independent of \(s, t, u\).

\[
\Delta(z, w) = \omega_1(z) \wedge \omega_2(w) - \omega_2(z) \wedge \omega_1(w)
\]

\[
\mathcal{Y} = (t - u)\Delta(z_1, z_2) \wedge \Delta(z_3, z_4) + (s - t)\Delta(z_1, z_3) \wedge \Delta(z_4, z_2) + (u - s)\Delta(z_1, z_4) \wedge \Delta(z_2, z_3)
\]

- reproduced (with fermions) in pure spinor formulation (Berkovits, Mafra 2005)

Singularity structure

- For fixed \(\Omega\) integrations over \(\Sigma\) produce poles in \(\mathcal{B}\) at positive integers \(s_{ij}\).
- The integral over \(\Omega\) requires analytic continuation beyond \(\text{Re}(s_{ij}) = 0\).
- Branch cuts in \(s_{ij}\) starting at integers produced from \(\Omega_{11}, \Omega_{22} \rightarrow i\infty\).
Genus-two Heterotic four-graviton amplitude

• Heterotic four NS boson amplitude at genus 2 (ED, Phong 2005)

\[
A^{(2)}_{\mathcal{O}}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = g_s^2 \mathcal{K} \int_{\mathcal{M}_2} d\mu_2 \mathcal{B}^{(2)}_{\mathcal{O}}(\tilde{\varepsilon}_i, k_i|\Omega)
\]

\[
B^{(2)}_{\mathcal{O}}(\tilde{\varepsilon}_i, k_i|\Omega) = \int_{\Sigma^4} \frac{\mathcal{V} \wedge \mathcal{W}_{\mathcal{O}}(\tilde{\varepsilon}_i, k_i)}{(\det \text{Im}\Omega)^2 \Psi_{10}(\Omega)} \exp \left(\sum_{i<j} s_{ij} G(z_i, z_j) \right)
\]

- \(\Psi_{10}(\Omega)\) is the Igusa cusp form.

• Dependence of the operator \(\mathcal{O}\) on the channel:

 - 4 gravitons \(\mathcal{R}^4\)
 - 2 gravitons + 2 gauge bosons \(\mathcal{R}^2\text{tr}(\mathcal{F}^2)\);
 - 4 gauge bosons \((\text{tr}\mathcal{F}^2)^2\)
 - 4 gauge bosons \(\text{tr}(\mathcal{F}^4)\)

- For example,

\[
\mathcal{W}_{\mathcal{R}^4}(\tilde{\varepsilon}_i, k_i) = \frac{\langle \prod_{i=1}^4 \tilde{\varepsilon}_i \cdot \bar{\partial} \tilde{x}(z_i) e^{ik_i \cdot \tilde{x}(z_i)} \rangle}{\langle \prod_{i=1}^4 e^{ik_i \cdot \tilde{x}(z_i)} \rangle}
\]

- Gauge parts are obtained by the correlators of the current \((0, 1)\)-forms.
UV-finiteness and one-loop amplitudes

• Thanks to modular invariance, all string amplitudes are UV-finite
 – shown for the closed bosonic string at genus one (Shapiro 1972)
 – holds for all modular invariant superstrings to all loops (i.e. all genera)

• All chiral amplitudes have a universal loop momentum factor

\[\mathcal{F}_R(z_i, \varepsilon_i, k_i, p_I | \Omega) = e^{i\pi p_I^\mu \Omega_{IJ} p_J^\mu} \times \ldots \]

 – Modular invariance allows one to choose a fundamental domain where \(\text{Im}(\Omega) \) bounded from below
 – For genus one, choose the standard fundamental domain

\[\mathcal{H}_1/\text{SL}(2, \mathbb{Z}) = \{ \tau \in \mathbb{C}, \text{Im}(\tau) > 0, |\tau| \geq 1, |\text{Re}(\tau)| \leq \frac{1}{2} \} \]

 – Analogous, more complicated, choices to higher genus

⇒ Uniform Gaussian suppression at large loop momenta

⇒ UV finiteness to all genera
Singularities in the projection $\overline{M}_2 \to \overline{M}_2$

• Projection $\overline{M}_2 \to \overline{M}_2$ is holó, but integration extends to boundary
 – are there singularities in the projection $\overline{M}_2 \to \overline{M}_2$?
 \[
 \Omega = \begin{pmatrix} \tau & u \\ u & \sigma \end{pmatrix}, \quad u \to 0 \quad \text{separating node} \\
 \sigma \to i\infty \quad \text{non-separating node}
 \]
 – Key ingredient in $\hat{\Omega}$ is the Szegö kernel
 \[
 S_\delta(z, w|\Omega) = \frac{\vartheta(\delta)(z - w|\Omega)}{\vartheta(\delta)(0|\Omega) E(z, w)}
 \]
 – As $u \to 0$ we have $\vartheta(\delta)(0|\Omega) \to \vartheta(\delta_1)(0|\tau) \vartheta(\delta_2)(0|\tau)$
 – Even $\delta = [\delta_1, \delta_2]$ with δ_1, δ_2 odd produces a singularity in S_δ and $\hat{\Omega}$

• Physical effects
 – singularity killed by ψ-zero modes in \mathbb{R}^{10} (space-time susy)
 – contribution when susy is broken by radiative corrections (Witten 2013)
 – Two-loop vacuum energy in Heterotic strings on CY orbifold $\mathbb{C}^3/\mathbb{Z}_2 \times \mathbb{Z}_2$
 \star is zero for $E_8 \times E_8 \to E_6 \times E_8$ with unbroken susy
 \star non-zero for $\text{Spin}(32)/\mathbb{Z}_2 \to SO(26) \times U(1)$ with broken susy
 (Atick, Sen 1988; · · ·; ED, Phong 2013; Berkovits, Witten 2014)
Singularities in the projection $\mathcal{M}_3 \to \mathcal{M}_3$

- **Some basic structure theorems**
 - A hyper-elliptic surface is a branched double cover of the sphere S^2;
 - All genus 1 and all genus 2 surfaces are hyper-elliptic;
 - Hyper-elliptic surfaces form a co-dim 1 sub-variety in the interior of \mathcal{M}_3
 (referred to as the hyper-elliptic divisor)

- **The genus-three period matrix (for even spin structure)**

 $$\hat{\Omega}_{IJ} = \Omega_{IJ} - \frac{i}{8\pi} \int \int \omega_I(z) \chi(z) S_\delta(z, w|\Omega) \chi(w) \omega_J(w) + \mathcal{O}(\chi^4)$$

 - For Ω on the hyper-elliptic divisor of \mathcal{M}_3
 there always exists an even spin structure δ such that $\vartheta[\delta](0|\Omega) = 0$
 - the presence of the extra Dirac zero modes kills effects of this singularity

\Rightarrow Beautiful proposal for the genus 3 superstring measure
 (Cacciatori, Dalla Piazza, van Geemen 2008)

- Another even δ does produce a *subtle singularity* in $\hat{\Omega}$ (Witten 2015)
Lectures on Superstring Amplitudes

Part 3: Low energy effective interactions

Eric D’Hoker
Mani L. Bhaumik Institute for Theoretical Physics
University of California, Los Angeles

Center for Quantum Mathematics and Physics - 2018
Amplitudes 2018 Summer School
Superstring Perturbation Theory and Supergravity

- Superstring perturbation theory in powers of the string coupling \(g_s \)
 - holds for weak coupling \(g_s \)
 - and for all energies
- Classical supergravity “\(\mathcal{R} \)”
 - leading low energy expansion of string theory
 - holds for all couplings \(g_s \)
- String induced effective interactions \(\mathcal{R}^4, D^4R^4, D^6R^4 \)
 - Evaluated in perturbation theory for \(g_s \ll 1 \)
Low energy expansion of tree-level amplitudes

- **Closed superstring tree-level four-graviton amplitude**

\[
\mathcal{A}^{(0)}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = \frac{1}{g_s^2} \frac{\mathcal{R}^4}{stu} \frac{\Gamma(1 - s)\Gamma(1 - t)\Gamma(1 - u)}{\Gamma(1 + s)\Gamma(1 + t)\Gamma(1 + u)}
\]

\[
s_{ij} = -\frac{\alpha'}{4}(k_i + k_j)^2
\]

- \(\mathcal{R}\) symbolically stands for the Weyl tensor
- \(\mathcal{R}^4\) symbolically stands for a scalar contraction dictated by supersymmetry

- **At low energy** \(|s_{ij}| \ll 1\)

 - massless string exchanges produce non-local contributions;
 - massive string exchanges produce local effective interactions
 - string-induced corrections to supergravity; eg. in Type II

\[
\frac{1}{stu} + 2\zeta(3) + \zeta(5)(s^2 + t^2 + u^2) + 2\zeta(3)^2stu + \frac{1}{2}\zeta(7)(s^2 + t^2 + u^2)^2 + \cdots
\]

massless \(\mathcal{R}^4\) \(D^4\mathcal{R}^4\) \(D^6\mathcal{R}^4\) \(D^8\mathcal{R}^4\)

- \(D^{2k}\mathcal{R}^4\) contraction of covariant derivatives \(D\) and \(\mathcal{R}^4\)
Effective interactions from Type IIB superstrings

- *SL(2, Z*)-duality symmetry of Type IIB superstrings
 - requires effective interactions to be *SL(2, Z*)-invariant;
 - Einstein frame metric *G_E* and *R^4_E* invariant under *SL(2, Z*)
 - combine axion *χ* dilaton *Φ* in \(\rho = \chi + ie^{-\Phi} \)
 - transforms by Möbius transformations under *SL(2, Z*)
 \[
 \rho \rightarrow \frac{a\rho + b}{c\rho + d}, \quad a, b, c, d, \in \mathbb{Z}, \quad ad - bc = 1
 \]
 - Flux fields *F_3^R*, *F_3^{NS*} transform linearly; *F_5* is invariant

- Effective interactions from four-graviton amplitude in Type IIB
 \[
 \int \sqrt{G_E} \left(\mathcal{E}_0(\rho)R^4_E + \mathcal{E}_4(\rho)D^4_E R^4_E + \mathcal{E}_6(\rho)D^6_E R^4_E + \mathcal{E}_8(\rho)D^8_E R^4_E + \cdots \right)
 \]
 - For each *p* the real-valued function *\mathcal{E}_p(\rho)* is *SL(2, Z*)-invariant
 \[
 \mathcal{E}_p \left(\frac{a\rho + b}{c\rho + d} \right) = \mathcal{E}_p(\rho)
 \]
 - namely it is a real-analytic modular function
 (not to be confused with meromorphic modular functions)
Real-analytic Eisenstein series

• A famous family of real-analytic modular functions

 – For $\text{Re}(s) > 1$ one defines E_s by Kronecker-Eisenstein sums

 \[E_s(\rho) = \sum_{m,n \in \mathbb{Z}} \frac{\rho_2^s}{\pi^s|m + \rho n|^{2s}} \quad \rho = \rho_1 + i \rho_2, \rho_1, \rho_2 \in \mathbb{R} \]

 – They are $SL(2,\mathbb{Z})$-invariant and eigenfunctions of the Laplacian

 \[\Delta E_s(\rho) = s(1 - s)E_s \quad \Delta = 4 \rho_2^2 \partial_\rho \partial_{\bar{\rho}} \]

 – Their asymptotic expansion for $\rho_2 \to \infty = \text{weak string coupling}$

 \[E_s(\rho) = 2\zeta(2s)\frac{\rho_2^s}{\pi^s} + \frac{2\Gamma(s - \frac{1}{2})\zeta(2s - 1)}{\Gamma(s)\pi^{s-\frac{1}{2}}\rho_2^{s-1}} + \mathcal{O}(e^{-2\pi \rho_2}) \]
Effective interactions and Eisenstein series

- String perturbation theory calculations in string frame
 - Convert Einstein metric $G_{E \mu \nu}$ to string metric $G_{\mu \nu} = e^{\Phi/2} G_{E \mu \nu}$
 \[
 \sqrt{G_E} \mathcal{E}_{2k}(\rho) D_E^{2k} R_E^4 = e^{(k-1)\Phi/2} \sqrt{G_E} \mathcal{E}_{2k}(\rho) D_E^{2k} R^4
 \]

 - Consider combinations involving Eisenstein series
 \[
 \sqrt{G_E} E_{3/2}(\rho) R_E^4 \approx e^{-2\Phi} \zeta(3) R^4 + \frac{\pi^2}{3} R^4
 \]
 \[
 \sqrt{G_E} E_5(\rho) D_E^4 R_E^4 \approx e^{-2\Phi} \zeta(5) D^4 R^4 + \frac{2\pi^4}{135} e^{2\Phi} D^4 R^4
 \]
 \[
 \sqrt{G_E} E_{3/2}(\rho)^2 D_E^6 R_E^4 \approx e^{-2\Phi} \zeta(3)^2 D^6 R^4 + \frac{2\pi^2}{3} \zeta(3) D^6 R^4 + \frac{\pi^4}{9} e^{-2\Phi} D^6 R^4
 \]
 \[
 \sqrt{G_E} E_{7/2}(\rho) D_E^8 R_E^4 \approx e^{-2\Phi} \zeta(7) D^8 R^4 + \frac{16\pi^6}{14175} e^{-4\Phi} D^8 R^4
 \]

 - Compare with low energy expansion of tree-level
 \[
 \frac{1}{stu} + 2\zeta(3) + \zeta(5)(s^2 + t^2 + u^2) + 2\zeta(3)^2 stu - \frac{1}{2} \zeta(7)(s^2 + t^2 + u^2)^2 + \cdots
 \]
 \[
 R^4 \quad D^4 R^4 \quad D^6 R^4 \quad D^8 R^4
 \]
D-instantons, S-duality and supersymmetry

• **Space-time supersymmetry and S-duality**
 - D-instantons (Green, Gutperle, Vanhove 1996), space-time susy (Green, Sethi 1997)
 \[\mathcal{E}_0(\rho) = E_{3/2}^3(\rho) \]
 - matches tree-level and genus-one results from string perturbation theory
 - Vanishing contribution from genus-two (ED, Gutperle, Phong 2005)

• **M-theory perturbation theory on torus** (Green, Kwon, Vanhove 1999; GV 2005)
 \[\mathcal{E}_4(\rho) = E_5^5(\rho) \]
 \[(\Delta - 12)\mathcal{E}_6(\rho) = E_{3/2}^3(\rho)^2 \]
 - \(\mathcal{E}_4 \) matches genus two (ED, Gutperle, Phong 2005)
 - \(\mathcal{E}_6 \) matches genus-two (ED, Green, Pioline, R. Russo 2014)
 genus three (Gomez, Mafra 2015)

• **Non-renormalization theorems**: no perturbative corrections
 - for \(\mathcal{E}_0 \) for \(h \geq 2 \)
 - for \(\mathcal{E}_4 \) for \(h \geq 3 \)
 - for \(\mathcal{E}_6 \) for \(h \geq 4 \)
Low energy expansion at genus one

• Recall genus-one Type II four-graviton amplitude \((\mathcal{M}_1 = \mathcal{H}_1/SL(2, \mathbb{Z}))\)

\[
\mathcal{A}^{(1)}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = \mathcal{R}^4 \int_{\mathcal{M}_1} \frac{d^2 \tau}{(\text{Im} \tau)^2} \mathcal{B}^{(1)}(s_{ij}|\tau)
\]

• Expand the partial amplitude \(\mathcal{B}^{(1)}\) for \(|s_{ij}| \ll 1\) for fixed \(\tau\)

\[
\mathcal{B}^{(1)}(s_{ij}|\tau) = \int_{\Sigma^4} \prod_{i=1}^{4} \frac{d^2 z_i}{\text{Im} \tau} \exp \left(\sum_{i<j} s_{ij} G(z_i - z_j|\tau) \right)
\]

– Scalar Green function \(G(z|\tau)\) given by “Kronecker-Eisenstein” Fourier sum

\[
G(z|\tau) = \sum_{m,n \in \mathbb{Z}} \frac{\tau_2}{\pi} \frac{e^{2\pi i (m \beta - n \alpha)}}{|m + \tau n|^2}
\]

\(z = \alpha + \tau \beta, \alpha, \beta \in \mathbb{R}\)

– For fixed \(\tau\) the Taylor expansion of \(\mathcal{B}^{(1)}\) in \(s_{ij}\) converges for \(|s_{ij}| < 1\)

• Graphical expansion of \(\mathcal{B}^{(1)}(s_{ij}|\tau) \implies\) Modular Graph Functions of \(\tau\)
Modular graph functions

- Graph in the expansion of $D^{2w} R^4 \implies$ Modular Function

\[
\begin{align*}
D^4 R^4 & \quad \bullet \quad \bullet \\
D^6 R^4 & \quad \bullet \quad \bullet \\
D^8 R^4 & \quad \bullet \quad \bullet \quad \bullet \quad \bullet \\
D^{10} R^4 & \quad \bullet \quad \bullet \quad \bullet \quad \bullet \\
\end{align*}
\]
Modular graph functions

$D^4 \mathcal{R}^4$

$D^6 \mathcal{R}^4$

$D^8 \mathcal{R}^4$

$D^{10} \mathcal{R}^4$

one-loop two-loops three-loops
One-loop : Eisenstein series

- One-loop worldsheet Feynman diagram with k bivalent vertices

$$
\prod_{i=1}^{k} \int \frac{d^2 z_i}{\tau_2} G(z_i - z_{i+1} | \tau) = \sum' \frac{\tau_2^k}{\pi^k |m + n\tau|^2 s} = E_k(\tau)
$$

- Our old friend: non-holomorphic Eisenstein series for integer index k

- Recall properties of $E_s(\tau)$

 - absolutely convergent for $\text{Re}(s) > 1$; analytically continue to $s \in \mathbb{C}$
 - reflection relation $\Gamma(s) E_s(\tau) = \Gamma(1 - s) E_{1-s}(\tau)$
 - satisfies a Laplace-eigenvalue equation on \mathcal{H}_1

$$
\left(\Delta - s(s - 1) \right) E_s(\tau) = 0 \quad \Delta = 4\tau_2^2 \partial_\tau \partial_{\bar{\tau}}
$$

- modular invariant $E_s\left(\frac{a\tau + b}{c\tau + d} \right) = E_s(\tau)$ under $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$
Two-loops : modular graph functions

- Feynman diagrams evaluate to the modular functions

\[C_{a_1,a_2,a_3}(\tau) = \sum_{m_r,n_r \in \mathbb{Z}, \atop r=1,2,3} \delta \left(\sum_{r=1}^{3} m_r \right) \left(\sum_{r=1}^{3} n_r \right) \prod_{r=1}^{3} \left(\frac{\tau_2}{\pi |m_r + n_r \tau|^2} \right)^{a_r} \]

- contribute to \(D^2w R^4\) with the weight given by \(w = a_1 + a_2 + a_3\)
- satisfy (inhomogeneous) Laplace-eigenvalue equations

\[w = 3 \quad C_{1,1,1} = \quad (\Delta - 0)C_{1,1,1} = 6E_3 \]

\[w = 4 \quad C_{2,1,1} = \quad (\Delta - 2)C_{2,1,1} = 9E_4 - E_2^2 \]

\[w = 5 \quad C_{3,1,1} = \quad (\Delta - 6)C_{3,1,1} = 3C_{2,2,1} + 16E_5 - 4E_2E_3 \]

\[w = 5 \quad C_{2,2,1} = \quad (\Delta - 0)C_{2,2,1} = 8E_5 \]

- Note that eigenvalues are of the form \(s(s - 1)\) for \(s = 1, 2, 3;\)
Structure Theorem

- $C_{a,b,c}(\tau)$ are linear combinations of $C_{w;s;p}(\tau)$ satisfying (ED, Green, Vanhove 2015)

$$(\Delta - s(s - 1))C_{w;s;p} = \mathcal{F}_{w;s;p}(E_{s'})$$

- $C_{w;s;p}$ and $\mathcal{F}_{w;s;p}$ of weight $w = a + b + c$ (with $E_{s'}$ assigned weight s');
- $\mathcal{F}_{w;s;p}$ is a polynomial of total degree 2 in $E_{s'}$ with $2 \leq s' \leq w$;

$s = w - 2m$ \quad $m = 1, \ldots, \left[\frac{w - 1}{2}\right]$ \quad $p = 0, \ldots, \left[\frac{s - 1}{3}\right]$

• Examples at low weight

$w = 3 \quad s = 1 \quad 0^{(1)}$
$w = 4 \quad s = 2 \quad 2^{(1)}$
$w = 5 \quad s = 1, 3 \quad 0^{(1)} \oplus 6^{(1)}$
$w = 6 \quad s = 2, 4 \quad 2^{(1)} \oplus 12^{(2)}$
$w = 7 \quad s = 1, 3, 5 \quad 0^{(1)} \oplus 6^{(1)} \oplus 20^{(2)}$

• System of differential relations to all loop orders (ED, Green, Kaidi, Vanhove 2016)

• Relation with polylogarithms & multiple zeta values

(ED, Green, Vanhove 2015; Francis Brown 2017)
Type IIB effective interactions at genus-two

• Recall Type II four-graviton amplitude at genus 2,

\[A^{(2)}(\varepsilon_i, k_i) = \mathcal{R}^4 \int_{\mathcal{M}_2} \mathrm{d}\mu_2 \mathcal{B}^{(2)}(s_{ij}|\Omega) \]

\[\mathcal{B}^{(2)}(s_{ij}|\Omega) = \int_{\Sigma^4} \mathcal{Y} \wedge \bar{\mathcal{Y}} \exp \sum_{i<j} s_{ij} G(z_i, z_j) \]

– \(\mathcal{Y} = (s - t) \Delta(z_1, z_3) \wedge \Delta(z_4, z_2) + 2 \) permutations;
– \(\Delta(z_i, z_j) \) is a holomorphic form independent of \(s, t, u \).

• Contributions to local effective interactions,
– \(\mathcal{R}^4 \) : zero, since \(\mathcal{Y} \) vanishes for \(s = t = u = 0 \);
– \(D^4 \mathcal{R}^4 \) : non-zero, \(\mathcal{B}^{(2)} \) constant on \(\mathcal{M}_2 \);
– \(D^6 \mathcal{R}^4 \) : non-zero, one power of \(G \) brought down in integral over \(\Sigma^4 \);

\[\mathcal{B}^{(2)}(s_{ij}|\Omega) = 32(s^2 + t^2 + u^2) + 192 stu \varphi(\Omega) + \mathcal{O}(s^4, \cdots) \]

– \(\varphi(\Omega) \) coincides with the Kawazumi-Zhang invariant.
The Zhang-Kawazumi invariant for genus-two

• The ZK-invariant is given as follows

\[8\varphi(\Omega) = \sum_{I,J,K,L} \left(Y_{IJ}^{-1} Y_{KL}^{-1} - 2Y_{IL}^{-1} Y_{JK}^{-1} \right) \int_{\Sigma^2} G(x, y) \omega_I(x) \omega_J(x) \omega_K(y) \omega_L(y) \]

– equivalent to definition via Arakelov geometry (Zhang 2007, Kawazumi 2008)

• Coefficient of genus-two D^6R^4 interaction involves \(\int_{\mathcal{M}_2} d\mu_2 \varphi(\Omega) \)

– Direct evaluation appeared completely out of reach ... until ...
The Zhang-Kawazumi invariant for genus-two

- The ZK-invariant is given as follows

$$8\varphi(\Omega) = \sum_{I,J,K,L} \left(Y_{IJ}^{-1} Y_{KL}^{-1} - 2Y_{IL}^{-1} Y_{JK}^{-1} \right) \int_{\Sigma^2} G(x, y) \omega_I(x) \omega_J(x) \omega_K(y) \omega_L(y)$$

 - equivalent to definition via Arakelov geometry (Zhang 2007, Kawazumi 2008)

- Coefficient of genus-two D^6R^4 interaction involves $\int_{\mathcal{M}_2} d\mu_2 \varphi(\Omega)$

 - Direct evaluation appeared completely out of reach ... until ...

- Theorem (ED, Green, Pioline, R. Russo 2014)

 $$(\Delta - 5)\varphi = -2\pi \delta_{SN}$$

 - Δ is the Laplace-Beltrami operator on \mathcal{M}_2 with Siegel metric ds_2^2;
 - δ_{SN} has support on separating node (into two genus-one surfaces)
 - The integral over \mathcal{M}_2 reduces to an integral over $\partial \mathcal{M}_2$

$$\int_{\mathcal{M}_2} d\mu_2 \varphi = \frac{1}{5} \int_{\mathcal{M}_2} d\mu_2 \left(\Delta \varphi + 2\pi \delta_{SN} \right) = \frac{2\pi^3}{45}$$

 - Exact agreement with predictions from S-duality and supersymmetry
Non-analytic contributions at low energy

- Non-analytic parts of the amplitudes at low energy
 - arise from boundary of moduli space contribution to the integral over B
 - dominant contribution at low energy is from supergravity
 - plus string corrections

- Look at two-particle unitarity cut in the s-channel

\[
i \text{Disc}_s A_{\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4}(p_1, p_2, p_3, p_4) = \int \frac{d^{10}k}{(2\pi)^{10}} \delta(k^2) \delta((q - k)^2) A_{\varepsilon_1,\varepsilon_2,\varepsilon_r,\varepsilon_s}(p_1, p_2, -k, k - q) A_{\varepsilon_r,\varepsilon_s,\varepsilon_3,\varepsilon_4}(k, q - k, p_3, p_4)
\]
Non-analytic part of the genus-one amplitude

• Obtain the genus-one discontinuity from tree-level
 – Use the fact that the kinematic factor is the same at all genera \(h \)
 \[
 A_{\epsilon_1,\epsilon_2,\epsilon_3,\epsilon_4}^{(h)}(p_1, p_2, p_3, p_4) = R_{\epsilon_1,\epsilon_2,\epsilon_3,\epsilon_4}^4(p_1, p_2, p_3, p_4)A_{\text{red}}^{(h)}(s, t, u)
 \]
 – and satisfies the recursive formula (Bern, Dixon, Dunbar, Perelstein, Rozowsky 1998)
 \[
 \sum_{\epsilon_r,\epsilon_s} R_{\epsilon_1,\epsilon_2,\epsilon_r,\epsilon_s}^4(p_1, p_2, -k, k-q) R_{\epsilon_r,\epsilon_s,\epsilon_3,\epsilon_4}^4(k, q-k, p_3, p_4) = s^4 R_{\epsilon_1,\epsilon_2,\epsilon_3,\epsilon_4}^4(p_1, p_2, p_3, p_4)
 \]

 – to obtain an effective discontinuity formula
 \[
 i \text{Disc}_s A_{\text{red}}^{(1)}(s, t, u) = \int \frac{d^{10}k}{(2\pi)^{10}} \delta(k^2) \delta((q-k)^2) A_{\text{red}}^{(0)}(s, t', u') A_{\text{red}}^{(0)}(s, t'', u'')
 \]
 – where \(t' = -(p_1 - k)^2, \ u' = -(p_2 - k)^4, \ t'' = -(p_4 - k)^2, \ u'' = -(p_3 - k)^2 \)
 \[
 A_{\text{red}}^{(0)}(s, t, u) = \frac{1}{stu} + 2\zeta(3) + \zeta(5)(s^2 + t^2 + u^2) + \cdots
 \]

• Substitution into \emph{s}-channel unitarity relation gives (by power-counting)
 \[
 \text{Disc}_s A_{\text{red}}^{(1)}(s, t, u) = \#s + \#\zeta(3)s^4 + \#\zeta(5)s^6 + \cdots
 \]
 \[
 A_{\text{red}}^{(1)}(s, t, u) = \#s \ln(-s) + \#\zeta(3)s^4 \ln(-s) + \#\zeta(5)s^6 \ln(-s) + \cdots
 \]
Absence of non-analytic contributions

- Discontinuity relation gives non-analytic contributions

 - At genus-one use previously obtained result
 \[A_{\text{red}}^{(1)}(s, t, u) = #s \ln(-s) + #\zeta(3)s^4 \ln(-s) + #\zeta(5)s^6 \ln(-s) + \cdots \]

 - Effective interaction \(D^2 R^4 \) vanishes by \(s + t + u = 0 \)

 - Genus-one \(R^4, D^4 R^4, D^6 R^4, D^{10} R^4 \) effective interactions are completely determined by the analytic part of the amplitude

 - Local effective interaction \(D^8 R^4 \) can be fixed only after non-analytic part has been properly normalized
Non-analytic plus analytic parts from genus-one amplitude

- Derivation of full genus-one $D^8 R^4$ from string theory amplitude

 - non-analytic part arises from $\tau \to i\infty$: partition moduli space

 $$\mathcal{M}_1 = \mathcal{M}_{1L} \cup \mathcal{M}_{1R}$$

 $\mathcal{M}_{1L} = \{\tau \in \mathcal{M}_1, \text{Im}(\tau) < L\}$

 $\mathcal{M}_{1R} = \{\tau \in \mathcal{M}_1, \text{Im}(\tau) > L\}$

 - Full amplitude is a sum $A^{(1)} = A^{(1)}_L + A^{(1)}_R$

 $$A^{(1)}_{L,R}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = R^4 \int_{\mathcal{M}_{1L,R}} \frac{d^2 \tau}{(\text{Im} \tau)^2} B^{(1)}(s_{ij} | \tau)$$

 - Both $A^{(1)}_L, A^{(1)}_R$ depend on L, but sum is independent of L
 - $A^{(1)}_L$ is analytic in s_{ij} but $A^{(1)}_R$ exhibits non-analyticity at $s_{ij} = 0$
Explicit calculation for $D^8 \mathcal{R}^4$

• Since $\mathcal{A}_L^{(1)}$ is analytic in s_{ij}, evaluate using modular graph functions

\[
\mathcal{A}_L^{(1)} = \frac{2\pi \zeta(3)}{45} \mathcal{R}^4 \left(\ln L - \frac{1}{4} + \ln 2 + \frac{\zeta'(4)}{\zeta(4)} - \frac{\zeta'(3)}{\zeta(3)} \right) + \text{power-behaved in } L
\]

• For $L \gg 1$, approximate integrand of $\mathcal{A}_R^{(1)}$ by supergravity + corrections

\[
\left. \mathcal{A}^{(1)} \right|_{D^8 \mathcal{R}^4} = \frac{4\pi \zeta(3)}{45} \left(\frac{17}{5} - \frac{1}{4} + \ln 2 + \frac{\zeta'(4)}{\zeta(4)} - \frac{\zeta'(3)}{\zeta(3)} \right) (s^4 + t^4 + u^4) \mathcal{R}^4
\]

\[
- \frac{4\zeta(3)}{45} \left(s^4 \ln(-2\pi s) + t^4 \ln(-2\pi t) + u^4 \ln(-2\pi u) \right) \mathcal{R}^4
\]

– Note: no ambiguities, no infinities, no renormalization required!
– Transcendentality ... (ED, Green, in progress)

• Genus-two story ...

(ED, Green, Pioline 2017, 2018, and in progress)
Outlook

• Some additional developments
 – Clarification of super Riemann surfaces with R-punctures (Witten 2012)
 – There exists a super-period matrix for R-punctures (Witten; ED, Phong 2015)
 – New relations between open and closed string amplitudes (Schlotterer et al.)

• Some outstanding issues
 – Systematic structure of low energy effective interactions w/ Green, Pioline
 ★ in terms of properties of modular graph functions
 ★ calculation without requiring subtleties of supermoduli space
 ★ UV divergences in supergravity and effective interactions

 – Ambi-twistor strings

 – string perturbation theory on curved spaces with RR flux, e.g. $AdS_5 \times S^5$