"Seeking ultra-high energy neutrinos in Antarctica with the radio detection technique" by Amy Connolly (The Ohio State University )

Thursday, October 26, 2017 - 4:00pm to 5:00pm
Physics and Astronomy Colloquium

Thursdays, 4:00-5:00 pm

1-434 Physics and Astronomy (map)
Reception from 3:30-4:00 p.m.
(unless otherwise posted)

Guest Speaker: Amy Connolly (The Ohio State University)

Talk Title:  “Seeking ultra-high energy neutrinos in Antarctica with the radio detection technique”


Ultra-high energy neutrinos ($>10^{18}$~eV) are uniquely capable of probing the most energetic astrophysics sources at cosmic distances, and fundamental physics at center-of-mass energies beyond what is probed by current particle accelerators.  The IceCube Neutrino Observatory at South Pole has announced the first measurements of a neutrino flux of astrophysical origin up to approximately $10^{15}$~eV through an optical signature.  In the last two decades, the radio technique has emerged as the most promising way to detect enough neutrinos in the UHE regime to extract the wealth of information that they carry about astrophysics and particle physics. I will present the latest developments in the field in terms of the experiments, analytical techniques and theoretical groundwork that are bringing us ever closer to the era of UHE neutrino astronomy.  I will also present some first attempts to study the radio sky with our antenna arrays, and I will also introduce some new ideas that our group at OSU is developing to use genetic algorithms in both the design of our projects and in data analysis.  

For more information, contact Jay Hauser

We thank the following people for their contributions to the wine fund for the post-colloquium reception:
Prof. Dolores Bozovic, Prof. Robijn Bruinsma, Prof. Wesley Campbell, Prof. Bob Cousins, Prof. Jay Hauser, Prof. Eric Hudson, Robert Huff, Prof. HongWen Jiang, Prof. Alex Kusenko, Prof. John Miao, Prof. George Morales, Prof. Pietro Musumeci, Prof. Christoph Niemann, Prof. Rene Ong, Prof. James Rosenzweig, Prof. David Saltzberg, and Prof. Jean Turner.

1-434 PAB