"Fractional Chern insulators in graphene heterostructures" by Eric Spanton (UCSB)

Wednesday, February 20, 2019 - 4:00pm to 5:00pm
Condensed Matter Physics Seminar

Fractional Chern insulators in graphene heterostructures

Eric Spanton

University of California, Santa Barbara


Graphene is a highly tunable platform for studying the effects of electron-electron interactions in two dimensions. Encapsulation with a 2D dielectric (hexagonal boron nitride, hBN), and more recently the use of single-crystal graphite top and bottom gates have decreased the electronic disorder to a level suitable for the to study fragile and exotic strongly correlated states. Additionally, control of twist angle between closely-matched crystal lattices allows for unique control of electronic properties, leading to the “Hofstadter butterfly” and more recently unconventional superconductivity. I will describe the first experimental observation of a class of states in nearly aligned hBN/graphene heterostructures called fractional Chern insulators, a close relative of the fractional quantum Hall effect. In graphene, fractional Chern insulators arise in the presence of electron-electron interactions, high magnetic fields, and a long wavelength ‘moire’ superlattice formed by close alignment between hBN and graphene lattices. Twist angle between graphene and hBN, electron density and perpendicular electric field tune the underlying single-particle bands to realize different types of fractional Chern insulators. The realization of fractional Chern insulators opens the door for the study of novel topological phase transitions and exotic defect states.

4-330 PAB